
1/192

SEO API Data Overview
chatgpt.com/c/bf1e3c50-d75b-4539-a532-28a9442db5da

ChatGPT 4o

Hey ChatGPT, what can you tell me about the data for SEO API?

The data for an SEO API typically includes a variety of metrics and information that can
help optimize a website's search engine performance. Some of the key data points an
SEO API might provide include:

1. Keyword Rankings: Information on how specific keywords are ranking on search
engines, along with historical data to track changes over time.

2. Backlink Data: Details about the backlinks pointing to a website, including the
number, quality, and sources of these links.

3. Site Audit Information: Insights into on-page SEO factors, such as meta tags,
content quality, site speed, mobile-friendliness, and technical SEO issues like
broken links or crawl errors.

4. Traffic Analytics: Data on organic search traffic, including the volume of visits,
bounce rate, and user behavior on the site.

5. Competitor Analysis: Information on competitors' SEO strategies, keyword
rankings, and backlink profiles to identify opportunities and threats.

6. Keyword Research: Suggestions for new keywords, along with data on search
volume, competition, and potential traffic.

This data can be used to make informed decisions about SEO strategies, optimize
website content, and improve overall search engine rankings. Are you looking for
information on a specific SEO API or trying to implement one for your website?

Sorry, misunderstood. I am talking about the product, or the SaaS, called,
quote, Data4SEO, end quote.

ccast
Highlight

ccast
Highlight

2/192

Ah, got it! DataForSEO is a SaaS product providing a suite of APIs designed to help
businesses with various aspects of SEO, SEM, and digital marketing. Here’s an
overview of what DataForSEO offers:

1. Rank Tracking API: Provides accurate and up-to-date data on keyword rankings
across multiple search engines and locations.

2. SERP API: Allows users to access search engine results pages (SERPs) data,
including organic and paid results, features snippets, and more.

3. Keyword Data API: Offers tools for keyword research, providing data on search
volume, keyword difficulty, CPC, and related keywords.

4. On-Page SEO API: Delivers insights into on-page SEO factors, helping identify
issues that can be optimized for better performance.

5. Backlinks API: Provides detailed information on backlinks, including metrics like
domain authority, anchor text, and link status.

6. Traffic Analytics API: Offers data on website traffic sources, user behavior, and
competitive traffic analysis.

7. Google Trends API: Enables users to analyze search trends over time to identify
emerging opportunities and topics.

DataForSEO is widely used by digital marketers, SEO professionals, and agencies to
enhance their data-driven strategies and improve search engine performance. Are you
considering using it for your business?

Yes, actually, we have a very important problem that we're looking to solve.
The problem is that we have clients whose Google Business profiles are
being overtaken by competitors because competitors are able to generate
reviews at a faster velocity than our clients are able to at times. We want to
be able to monitor competitors and look at how many reviews they have,
keep track of the number of reviews, and track the trend month over month
for how many reviews these companies are acquiring on a month-to-month
basis, and compare that to our clients' Google Business profiles and their
review counts and review velocity. Which API would best help us to
accomplish this?

For your needs, the Business Data API from DataForSEO would be a great fit. This API
is designed to provide insights into Google Business Profiles and their associated data,
including reviews. Here’s how it can help you:

ccast
Highlight

3/192

1. Review Tracking: Monitor the number of reviews on both your clients' and their
competitors' Google Business profiles.

2. Review Trend Analysis: Analyze the review acquisition trends over time, allowing
you to see how review counts are changing month-over-month.

3. Competitor Analysis: Compare your clients' review metrics against their
competitors to identify areas where they need to improve.

By leveraging this API, you can keep a close eye on how competitors are performing in
terms of review generation and adjust your strategies to help your clients maintain or
regain their competitive edge.

That's great. Can you tell me something? We have a Looker Studio
template that we set up for clients where we combine data sources from
Google Analytics, Google Search Console, and Google My Business, and
I'm wondering if it's possible to use an API like Data for SEO to query the
competitors for a client and provide metrics inside of the dashboard for
things like review count, review velocity, and things of that nature. Is it
possible to integrate a third-party API somehow into Looker Studio so that
we're displaying data there, possibly storing some data maybe in
something like BigQuery in order to keep a historical record of what some
of this data looks like, unless that is that Data for SEO is able to give us
historical data without the need for storing information.

Yes, you can integrate third-party APIs like DataForSEO into Looker Studio to display
metrics such as review count and review velocity alongside other data sources like
Google Analytics, Google Search Console, and Google My Business. Here's a general
approach to achieve this integration:

1. API Integration: Use a service like Google Cloud Functions or a server with
scheduled tasks to call the DataForSEO API regularly. This service will gather data
on review counts, review velocity, and other metrics for your clients and their
competitors.

2. Data Storage: Store the fetched data in a database like Google BigQuery. This
allows you to keep a historical record of the data, which is especially useful if the
API doesn't provide historical data directly. BigQuery can store large datasets
efficiently and is well-integrated with Looker Studio.

ccast
Highlight

4/192

3. Looker Studio Connection: Connect Looker Studio to BigQuery to visualize the
stored data. You can create custom charts and dashboards that display metrics
like review count trends, review velocity, and comparisons between your clients
and their competitors.

4. Dashboard Customization: Customize your Looker Studio dashboard to present
the data in a way that's meaningful for your clients. This might include
visualizations like time series charts for review trends, comparison tables, and
alerts for significant changes in competitor metrics.

By using this approach, you can provide your clients with a comprehensive view of their
Google Business performance compared to their competitors, leveraging the power of
DataForSEO and Looker Studio.

Can you elaborate a little bit on what a server with scheduled tasks
entails?

A server with scheduled tasks is a setup where a server or a cloud-based computing
resource is used to run specific tasks at regular intervals. These tasks can include
fetching data from APIs, processing data, and storing it in a database. Here’s how it
generally works:

1. Server Setup: You can use a physical server, a virtual machine, or a cloud service
like AWS EC2, Google Cloud Compute Engine, or Azure Virtual Machines. These
platforms provide the computing resources needed to run your scripts or
applications.

2. Task Scheduling: Use a scheduling tool to automate when and how often your
tasks run. Common tools for scheduling tasks include:

Cron Jobs: On Unix-like systems, cron is used to schedule scripts or
commands to run at specific times or intervals. You define the schedule using
a cron expression.
Task Scheduler: On Windows, Task Scheduler can be used to automate the
running of tasks at scheduled times.
Cloud Scheduler: Google Cloud Scheduler is a fully managed cron job
service that allows you to run tasks at regular intervals without managing
your own server.

3. Script or Application: Write a script or application that performs the desired task,
such as calling an API, processing the returned data, and storing it in a database.
This script could be written in languages like Python, JavaScript (Node.js), or any
other language you’re comfortable with.

ccast
Highlight

5/192

4. Data Storage: Once the data is fetched and processed, it’s stored in a database
like Google BigQuery, SQL, or NoSQL databases. This stored data can then be
used for analysis and visualization.

5. Monitoring and Maintenance: Ensure the server and scheduled tasks are
monitored for errors or failures. Implement logging and alerting mechanisms to
notify you of any issues that may arise.

Using a server with scheduled tasks allows you to automate data collection and
processing, ensuring that you have up-to-date information available for analysis and
reporting. This setup can be particularly useful when integrating multiple data sources
into dashboards like those in Looker Studio.

It sounds like Google's cloud scheduler would be the easiest route. Would
that be a fair assumption?

Yes, using Google Cloud Scheduler is often one of the easiest and most convenient
routes, especially if you're already working within the Google Cloud ecosystem. Here’s
why it might be the best choice:

1. Managed Service: Google Cloud Scheduler is a fully managed service, meaning
you don't have to worry about server maintenance or uptime. It handles the
scheduling of tasks reliably without requiring you to manage infrastructure.

2. Integration: It integrates seamlessly with other Google Cloud services, such as
Google Cloud Functions, App Engine, and Pub/Sub. This makes it easier to set up
workflows that involve triggering functions or processes in your cloud environment.

3. Ease of Use: Setting up a task in Cloud Scheduler is straightforward. You can use
a simple web interface or command-line tools to define your cron jobs, and it
supports flexible scheduling expressions.

4. Scalability: Cloud Scheduler can handle tasks of various sizes and complexities,
scaling to meet your needs as they grow.

5. Security: It offers built-in security features, allowing you to manage permissions
and access controls using Google Cloud IAM, ensuring that only authorized users
can create or modify tasks.

Using Google Cloud Scheduler can streamline your workflow by automating tasks with
minimal overhead and maintenance, making it a practical choice for integrating with
services like DataForSEO and storing data in BigQuery.

Can you elaborate a little bit on what Google Cloud Functions is?

ccast
Highlight

ccast
Highlight

6/192

Google Cloud Functions is a serverless computing service offered by Google Cloud
Platform. It allows you to run your code in response to events without having to manage
any server infrastructure. Here's a bit more about how it works and its benefits:

1. Event-Driven: Cloud Functions can be triggered by events from various sources,
such as HTTP requests, changes in Cloud Storage, messages in Pub/Sub, or
even events from other Google Cloud services.

2. Serverless: Being serverless means you don't have to provision or manage
servers. You simply write your function code and deploy it. Google Cloud
automatically handles the scaling and execution of your functions as needed.

3. Flexible Language Support: Cloud Functions supports several programming
languages, including JavaScript (Node.js), Python, Go, Java, and others, making it
versatile for developers.

4. Scalability: It automatically scales with the load. Whether you're handling one
request or thousands, Cloud Functions scales up or down without requiring any
configuration on your part.

5. Pay-As-You-Go: You only pay for the computing resources you use while your
function is running. This cost-effective model is ideal for applications with variable
or unpredictable workloads.

6. Integration with Google Cloud Services: Cloud Functions can easily integrate
with other Google Cloud services, enabling you to build complex workflows. For
example, you can trigger a Cloud Function when a new file is uploaded to Cloud
Storage or when a message is published to Pub/Sub.

7. Use Cases: Common use cases include running backend services, responding to
webhooks, processing files, handling HTTP requests, and automating tasks in
response to cloud events.

Google Cloud Functions provides a powerful way to build and deploy lightweight, event-
driven applications and services without the overhead of managing server infrastructure.

So can you just very simply clarify what the difference between Google
Cloud Functions and Google Cloud Scheduler are?

Sure! The main difference between Google Cloud Functions and Google Cloud
Scheduler lies in their purpose and how they operate:

ccast
Highlight

7/192

1. Google Cloud Functions:

Purpose: It's a serverless computing service designed to run your code in
response to events.
Operation: You write and deploy functions that execute automatically when
triggered by specific events, such as an HTTP request, a file upload, or a
message in a queue.
Use Case: Ideal for running small pieces of code or scripts that respond to
real-time events without managing any server infrastructure.

2. Google Cloud Scheduler:

Purpose: It's a service for scheduling tasks, similar to cron jobs, that need to
be executed at specific times or intervals.
Operation: You schedule tasks that can trigger HTTP endpoints, Pub/Sub
topics, or App Engine targets on a regular basis or at specific times.
Use Case: Best for automating regular tasks or workflows, like running batch
processes or performing regular data retrieval and processing tasks.

In summary, Cloud Functions is about executing code in response to events, while
Cloud Scheduler is about scheduling tasks to run at specified times. They can be used
together, for example, where Cloud Scheduler triggers a Cloud Function to perform a
task at a scheduled interval.

Would it be fair to assume that we could implement a solution with data for
SEO API by creating a Google Cloud Scheduler that runs or executes a
Google Cloud Function code to get API data and store it to a BigQuery
database and do that at set intervals so that the Cloud Scheduler manages
the frequency of code execution and Google Cloud Function is managing
the actual code that is being executed?

Yes, that's a fair assumption and a great way to leverage both Google Cloud Scheduler
and Google Cloud Functions together. Here's how you can implement this solution:

1. Google Cloud Functions: Write a Cloud Function that:

Calls the DataForSEO API to fetch the necessary data about reviews,
competitors, etc.
Processes this data as needed.
Stores the processed data into a Google BigQuery table for further analysis
and reporting.

ccast
Highlight

8/192

2. Google Cloud Scheduler: Set up a Cloud Scheduler job that:

Triggers the Cloud Function at specified intervals (e.g., daily, weekly, or
monthly) based on your requirements.
Uses HTTP requests to invoke the Cloud Function, passing any necessary
parameters or configurations.

3. BigQuery: Use Google BigQuery to:

Store the data retrieved by the Cloud Function, allowing for easy querying
and integration with Looker Studio.
Maintain a historical record of the data to analyze trends over time.

This setup allows you to automate the process of fetching, processing, and storing data
at regular intervals without manual intervention, making it efficient and scalable for your
needs.

Could you give me an approximation of what type of costs we would be
looking at incurring by implementing this solution using Google Cloud
Scheduler, Google Cloud Functions, and the data for SEO API for
business information?

Estimating the costs for implementing a solution using Google Cloud Scheduler, Google
Cloud Functions, and DataForSEO involves considering several factors, including the
frequency of data retrieval, the volume of data, and the pricing model of each service.
Here’s a rough breakdown:

1. Google Cloud Scheduler:

Google Cloud Scheduler is quite cost-effective. As of now, the pricing is
typically around a few cents per job invocation per month. If you’re
scheduling a job to run once a day, this might cost you just a few dollars per
month.

2. Google Cloud Functions:

Pricing is based on the number of function invocations, the duration of
function execution, and the resources allocated (memory and CPU).
For instance, you get two million invocations free per month. Beyond that,
the cost depends on the memory allocated and execution time. A simple
function running briefly could cost a few dollars a month, depending on
usage.

ccast
Highlight

9/192

3. Google BigQuery:

Costs are primarily driven by the amount of data stored and the volume of
data processed during queries.
Storage costs are approximately $0.02 per gigabyte per month.
Querying costs about $5 per terabyte of data processed. However, keeping
your datasets well-optimized can help keep costs low.

4. DataForSEO API:

Pricing for DataForSEO APIs is typically based on the number of API
requests or the data volume. Their pricing can vary, so checking their website
for specific pricing tiers or contacting them for a custom quote might be
beneficial. Depending on the usage, this could range from tens to hundreds
of dollars monthly.

Overall, if you’re using these services efficiently, you might expect a monthly cost
ranging from a few tens to a few hundred dollars, primarily driven by the DataForSEO
API and BigQuery querying costs. The Google Cloud components (Scheduler and
Functions) are usually the less expensive part of this setup, especially at low to
moderate usage levels.

So for this particular use case, I think that we would be running these tasks
through cloud scheduler at a frequency of probably just once a month.
Forgetting or ignoring the data for SEO API costs, can you give me a
rough approximation of what the cost would be for the rest of the setup?

If you're running the tasks only once a month using Google Cloud Scheduler and Google
Cloud Functions, the costs would likely be minimal. Here's a rough approximation:

1. Google Cloud Scheduler:

Since you plan to run the task once a month, the cost for Cloud Scheduler
will be negligible, possibly just a few cents per month.

2. Google Cloud Functions:

With infrequent invocations (once a month), you'll likely remain well within the
free tier for invocations, which is two million per month.
If your function runs for a short time (e.g., seconds) and uses minimal
memory, the execution costs will also be minimal, likely less than a dollar per
month.

ccast
Highlight

10/192

3. Google BigQuery:

Storage Costs: If your dataset is small (a few gigabytes), the storage cost
will be very low, approximately a few cents to a couple of dollars per month.
Query Costs: With a once-a-month querying schedule, the costs are likely to
remain under a dollar unless you're processing very large datasets.

Overall, excluding the DataForSEO API costs, you're looking at a monthly expense
that's likely under five dollars, primarily driven by minimal usage of Cloud Functions and
BigQuery. This setup is highly cost-effective, especially at low usage levels.

Can you explain to me how I go about accessing Google Cloud Functions
and Google Cloud Scheduler?

Accessing Google Cloud Functions and Google Cloud Scheduler involves setting up a
Google Cloud Platform (GCP) account and using the Google Cloud Console to configure
your services. Here’s a step-by-step guide to get you started:

Setting Up Your Google Cloud Platform Account

1. Create a GCP Account: If you don’t have one already, sign up for a Google Cloud
Platform account at the Google Cloud website. New users often get a free trial with
credits to explore various services.

2. Set Up a Project: After logging in to the Google Cloud Console, create a new
project. This will be the environment where you manage and deploy your services.

Accessing Google Cloud Functions

1. Navigate to Cloud Functions:

In the Google Cloud Console, go to the Navigation Menu and select Cloud
Functions under the Compute section.

2. Enable the API:

If prompted, enable the Cloud Functions API for your project.
3. Create a Cloud Function:

Click on Create Function.
Configure the basic settings, including the function name, region, and trigger
type (e.g., HTTP trigger for easy testing).
Write your function code directly in the console or upload a ZIP file with your
code.
Set any necessary environment variables or dependencies.

ccast
Highlight

11/192

4. Deploy the Function:

Once configured, click Deploy to make your function live. This process might
take a few minutes.

Accessing Google Cloud Scheduler

1. Navigate to Cloud Scheduler:

In the Google Cloud Console, go to the Navigation Menu and select Cloud
Scheduler under the Tools section.

2. Enable the API:

If prompted, enable the Cloud Scheduler API for your project.
3. Create a Cloud Scheduler Job:

Click on Create Job.
Fill out the job details, including the name, frequency (using cron syntax for
scheduling), and timezone.
Set the Target to HTTP and provide the URL of the Cloud Function you want
to trigger.
Configure any necessary headers or authentication methods, if applicable.

4. Save and Test:

Save your job and test it to ensure it correctly triggers the Cloud Function.

Additional Setup

IAM Permissions: Ensure that the necessary permissions are set for both Cloud
Functions and Cloud Scheduler. This might involve setting roles for service
accounts that allow them to invoke functions or access other services.

Monitoring and Logs: Use Google Cloud Logging and Monitoring to track the
performance and invocations of your functions and scheduled jobs, making
debugging easier if issues arise.

By following these steps, you’ll be able to set up and access both Google Cloud
Functions and Google Cloud Scheduler, allowing you to automate tasks and manage
serverless applications within your GCP environment.

Can you explain briefly what pub/sub is?

ccast
Highlight

12/192

Google Cloud Pub/Sub is a messaging service that allows you to send and receive
messages between independent applications or components in real time. It follows a
publish/subscribe (pub/sub) model, which decouples the entities that send messages
(publishers) from the entities that receive messages (subscribers). Here’s a brief
overview of how it works and its key features:

How Pub/Sub Works

1. Topics:

Publishers send messages to a topic. A topic is a named resource to which
messages are sent by publishers.

2. Subscriptions:

Subscribers express interest in one or more topics by creating a subscription
to a topic. A subscription represents the stream of messages from the topic
to the subscribing application.

3. Messages:

Messages are sent by publishers to topics. These messages are then
forwarded to all subscriptions of that topic.

4. Delivery:

Subscribers pull messages from the subscription, or they can receive
messages via push delivery to an endpoint.

Key Features

Scalability: Pub/Sub can handle large volumes of messages and can scale
automatically to meet demand.

Asynchronous Communication: Enables different parts of an application to
communicate asynchronously, improving efficiency and decoupling components.

Reliability: Provides at-least-once delivery of messages, ensuring that messages
are not lost.

Flexible Delivery: Supports both push and pull delivery mechanisms, allowing
subscribers to choose how they want to receive messages.

Integration: Easily integrates with other Google Cloud services, making it a
powerful tool for building event-driven architectures.

Use Cases

13/192

Event Ingestion: Collect and distribute events from various sources for real-time
processing and analytics.
Decoupling Microservices: Allow independent development and scaling of
microservices that communicate through Pub/Sub.
Real-time Data Streaming: Stream data for applications that require real-time
updates, such as monitoring and alerting systems.

Google Cloud Pub/Sub is a versatile messaging service that simplifies communication
between different parts of an application, enabling you to build more resilient and
scalable systems.

Okay, can you help me plan the implementation in terms of BigQuery.
Here's what I'm thinking the actions and functionality that the script will
need to include: - Connect to a BigQuery database - Find a list of
Customers in BigQuery (our agency's customers) - Get a list of queries in
for each customer in BigQuery. Queries are stored in a comma separated
list. - Use the DataForSEO API to perform all queries for a customer one
by one. - For each query, the script will need to identify the top 5
competitors and the position of our customer. - After performing all of the
queries for a customer the script must create a deduped list of all top
competitors for all queries. - The script will need to populate the list of
competitors in BigQuery and connect them to the customer. - For each
competitor, the script will need to use the DataForSEO API to find key
datapoints for the competitor including review count and review velocity (if
possible) - The script must perform these actions for all customer records.
I have attached a diagram of what I think is a possible set up for the
BigQuery Database. Can you tell me if this database setup is possible with
BigQuery, if its necessary to split the database into multiple tables like this,
or if there is a better/simpler solution?

Your proposed database setup in BigQuery, as depicted in your diagram, is a sound
approach for managing data relationships in a relational database style. Here’s a
breakdown of the setup and some considerations for using BigQuery effectively:

Analysis of Your Proposed Setup

1. Customers Table:

Contains basic customer information and a list of queries (comma-
separated).

ccast
Highlight

14/192

2. Customers Competitors Table (Join Table):

Acts as a many-to-many relationship table between customers and
competitors.
Stores pairs of Customer ID and Competitor ID.

3. Competitors Table:

Stores competitor details including review count and review velocity.

Considerations and Recommendations

1. Use of Tables:

Your setup using multiple tables to represent relationships is valid and
facilitates organized data management, especially for handling many-to-
many relationships effectively in BigQuery.

2. Handling of Queries:

Storing queries as a comma-separated list in the Customers Table could be
less efficient for processing. Consider storing each query in a separate table
row linked to the customer ID for more straightforward processing and better
scalability.

3. Schema Design:

Ensure each table includes a primary key (e.g., Customer ID in Customers
Table, Competitor ID in Competitors Table).
Use indices on frequently accessed fields like Customer ID in the join table
to optimize query performance.

4. Normalization:

Your approach to normalization by separating data into different tables helps
in maintaining data integrity and reducing redundancy. However, BigQuery is
optimized for handling large datasets with denormalized structures.
Depending on your query patterns and data volume, consider if a
denormalized schema might be more performance-efficient in some cases.

5. API Integration and Data Insertion:

When integrating with the DataForSEO API and inserting data into BigQuery,
ensure your scripts handle data type mapping correctly and manage any API
limits or errors gracefully.
Use batch inserts or streaming inserts to populate BigQuery tables efficiently.

15/192

6. Performance Considerations:

Since BigQuery is optimized for large-scale analytics, ensure that your
queries are optimized for performance, especially when joining large
datasets.

Implementation Steps Using Google Cloud Functions

Your script in a Google Cloud Function can be structured to:

Connect to BigQuery.
Retrieve customer data and associated queries.
Loop through each query to fetch competitor data from DataForSEO.
Deduplicate competitor data and populate the Competitors Table and Customers
Competitors Table.
Schedule this script using Google Cloud Scheduler to run at your desired
frequency.

Example of a Simple Script Workflow

1. Fetch Customers:

Query BigQuery to get the list of customers.
2. Process Queries for Each Customer:

Split the comma-separated list of queries.
For each query, use DataForSEO to fetch competitors and update or insert
data into the Competitors Table.

3. Update Relationships:

Ensure the Customers Competitors Table is updated with new relationships.
4. Performance Monitoring:

Regularly monitor the function’s execution time and query costs in BigQuery
to ensure the setup remains cost-effective.

This plan should provide a robust foundation for automating the competitor analysis for
your clients using BigQuery and Google Cloud Platform services.

Is this a better database set up?

Yes, this revised setup you've outlined is an improvement for several reasons:

ccast
Highlight

16/192

1. Normalization: By separating customer queries into a distinct table (Customer
Queries), you improve the database's normalization, which helps reduce
redundancy and improve data integrity. This structure makes it easier to manage
queries independently of customer records.

2. Clarity and Scalability: The separation enables more straightforward scalability
and updates. You can add, modify, or remove queries without impacting the main
customer data. This structure is particularly beneficial for applications with a high
volume of changes or additions to query data.

3. Database Performance: With this setup, queries on individual tables can be more
efficient, especially if indexes are used effectively. For example, joining the
Customer Queries table with the Customers table on Customer ID allows for
efficient lookups and updates.

4. Flexibility in Data Management: This design offers more flexibility in handling
data. For instance, if you need to update a query, you do not risk affecting
customer data, and vice versa. It also makes it easier to handle permissions and
access control on a more granular level.

5. Simplified Data Manipulation and Reporting: By isolating queries and
competitor data, it becomes easier to write more straightforward and efficient SQL
queries for reporting and data manipulation purposes. It can significantly enhance
the performance of analytical queries and simplifies maintenance.

Overall, this layout is better suited for managing complex relationships and will likely
result in improved performance and easier maintenance as your data scales. This model
adheres more closely to best practices in database design, particularly for use cases
involving relational data in analytical contexts like those seen with BigQuery.

I'm new to BigQuery. When I go to BigQuery Studio, I have an option to
create a dataset. In BigQuery is a dataset the same as a database table?

In BigQuery, a dataset is not the same as a database table. Instead, it's helpful to think
of it more like a database or schema in traditional relational databases. Here’s a
breakdown of how these concepts relate in BigQuery:

BigQuery Datasets

Definition: A dataset in BigQuery is a container that holds tables, views, and other
data objects. It helps organize and manage access to your data. Think of it as a
database in a traditional SQL database system.

ccast
Highlight

17/192

Purpose: Datasets are used to organize data by project, subject area, or other
categories. For example, you might have separate datasets for different
departments within a company, like sales, marketing, and operations.
Access Control: You can set access permissions at the dataset level, controlling
who can access the tables and views contained within.

BigQuery Tables

Definition: A table is where data is stored in BigQuery. Tables contain rows and
columns, similar to tables in traditional relational databases.
Purpose: Tables hold the actual data that you query with SQL in BigQuery. Each
table has a defined schema that describes the data types and structure.
Types of Tables: There are various types of tables in BigQuery, including native
tables (where data is stored directly in BigQuery), external tables (where data can
be stored in sources like Google Cloud Storage but queried through BigQuery),
and materialized views (which store the results of a query for faster access).

Practical Example

If you're setting up your environment in BigQuery:

1. Create a Dataset: First, you create a dataset (akin to creating a database). This
might be named after your project or the type of data it will contain, such as
CustomerData.

2. Create Tables: Inside the dataset, you would create tables. For example, you
might have tables like Customers, Queries, Competitors, etc., as per your
database diagram.

Using BigQuery Studio

When you're in BigQuery Studio (also known as the BigQuery web UI):

Creating a Dataset: This is like setting up a new database. You would typically do
this once for a set of related data.
Creating Tables: This is where you define the specifics of the data you will store,
such as columns and their data types.

This structure helps keep your data organized and secure, while also allowing for
efficient management and querying of large datasets.

I created a dataset called "CustomerGbpCompetitors". I then created a
table called "Customers". The Customers table has the following fields: -
CustomerID (Integer, Required) - CustomerName (String, 255 max length)
I have two questions: 1. How do I define the CustomerID as the primary

ccast
Highlight

18/192

key for this table? 2. BigQuery has a table settings section called "Partition
and cluster settings". A partitioning option available is "Partition by field:
CustomerID". Do I need to do anything with partitioning?

Great questions! Let's tackle them one at a time:

1. Defining the Primary Key in BigQuery

BigQuery does not inherently support primary keys as traditional relational databases
do, because BigQuery is designed to handle large-scale data warehousing operations
where the emphasis is on data analysis rather than transactional integrity. However, you
can enforce uniqueness and primary key constraints in your application logic or through
the use of SQL queries that check for duplicate IDs before inserting new records.

If you require a system to ensure that CustomerID is unique, you can do the following:

Unique Constraint: While BigQuery does not natively enforce uniqueness, you
can periodically run a deduplication query to ensure no duplicate CustomerID
exists. Alternatively, when loading data, ensure your data preparation or ETL
process includes a step to check for and remove duplicates.

Data Insertion Checks: When inserting data, you can use a query that checks for
the existence of the CustomerID before inserting a new record.

Here’s an example query to check for an existing CustomerID before inserting:

sql

INSERT INTO your dataset.Customers (CustomerID, CustomerName)
SELECT 1 AS CustomerID, 'New Customer' AS CustomerName
WHERE NOT EXISTS (
 SELECT 1 FROM your dataset.Customers WHERE CustomerID 1
);

This SQL snippet prevents the insertion of a new record with CustomerID 1 if such a
record already exists.

ccast
Highlight

19/192

2. Partitioning and Clustering in BigQuery

Partitioning is used in BigQuery to divide a large table into manageable parts based on
the values in one column, typically a date or timestamp, but it can be any field such as
CustomerID. Partitioning can make queries more efficient by reducing the amount of
data scanned.

When to Use Partitioning:

If you have a very large number of customers and queries frequently involve
filtering or aggregating data for specific CustomerIDs, then partitioning by
CustomerID might be useful.
However, partitioning on CustomerID could be less efficient if the number of unique
customers is very high, leading to many small partitions. It's generally more
common to partition by a date field, such as a creation date, if applicable.

Clustering can be used in conjunction with or independently of partitioning. Clustering
sorts data within each partition based on the values in one or more columns. This can
significantly improve performance for queries that filter or sort on the clustered columns.

Recommendation:

For a customers table: Unless CustomerID covers a range of frequently queried
and sufficiently large segments of data, you might not benefit much from
partitioning by this field. Consider partitioning by a date-related field if applicable.
Use Clustering: If you decide against partitioning by CustomerID, consider
clustering the table by CustomerID and possibly other columns that are frequently
used in your queries to improve performance.

In summary, carefully consider your typical query patterns and data volume when
deciding on partitioning and clustering settings. These features can greatly enhance
query performance but need to be matched to your specific use case.

It sounds like for the Customers table the best approach would be to not
use any partitioning, is that a fair assumption?

Yes, that's a fair assumption. For the Customers table, especially if it's not expected to
be extremely large (i.e., not containing millions or tens of millions of entries), partitioning
may not provide significant benefits and could even complicate your query setup without
much payoff.

Here are a few reasons why skipping partitioning might be the best approach for
the Customers table:

ccast
Highlight

20/192

1. Simplicity: Keeping the table structure simple without partitioning means you
won’t need to manage any additional complexity that comes with partitioned
tables, such as dealing with partition filters in your queries.

2. Size Considerations: Partitioning is most beneficial for large datasets where
queries can benefit from scanning smaller subsets of data. If the Customers table
is relatively small, the performance gains from partitioning might be negligible.

3. Query Flexibility: Without partitioning, you won’t need to consider partitioning
keys in your queries, which gives you more flexibility in how you write and optimize
your SQL.

4. Cost: While partitioning can reduce costs by reducing the amount of data scanned
during queries, if the overall data volume is low, the cost savings might be minimal.

Clustering, on the other hand, might still be beneficial even if you decide against
partitioning. Clustering can organize data based on the CustomerID or other fields that
are often used in query filters, potentially improving query performance by reducing the
amount of data read during query execution.

In conclusion, for the Customers table, it's reasonable to opt out of partitioning,
especially if the data volume isn't massive. This approach keeps your BigQuery
management straightforward while still maintaining good performance for typical usage
patterns.

Okay, I've set up all of my BigQuery database tables. Here's a summary of
those tables: Customers: - CustomerID (Integer, Required) -
CustomerName (String, 255 max length, Required) Competitors: -
CompetitorID (Integer, Required) - CompetitorName (String, 255 max
length, Required) - ReviewCount (Integer, Nullable) - AverageRateing
(Float, Nullable) CustomersCompetitors: - CustomerID (Integer, Required)
- CompetitorID (Integer, Required) CustomerQueries: - QueryID (Integer,
Required) - Query (String, 255 max length, Required) - CustomerID
(Integer, Required)

Great, your database structure looks well-organized and well-suited for the purposes
you've described. Here are a few suggestions to ensure you make the most of this
setup:

1. Indexing: Make sure to index the CustomerID and CompetitorID fields in the
relevant tables to improve the performance of your queries, especially those
involving joins across these tables.

ccast
Highlight

21/192

2. Data Integrity: Consider setting up foreign key-like constraints in your application
logic or data loading scripts since BigQuery does not enforce foreign key
constraints. This can help maintain referential integrity between tables.

3. Query Optimization: When you start running queries, particularly those involving
joins across multiple tables, monitor their performance. Utilize BigQuery's query
execution details to understand if there are any bottlenecks or optimizations you
can make, such as adjusting how you're clustering your data.

4. Security and Access: Manage access to your datasets and tables appropriately,
ensuring that only authorized users and applications can view or manipulate the
data.

5. Maintenance and Monitoring: Regularly review the setup to ensure it continues
to meet your needs as data volumes grow or usage patterns change. BigQuery
offers tools to analyze and optimize storage and query costs.

With these tables configured, you’re well-positioned to start integrating and analyzing
data from your applications and external APIs. If you need any help with specific queries
or optimization tips as you start to work with this data, feel free to ask!

How do we set up the indexing for CustomerID and CompetitorID in
BigQuery?

In BigQuery, traditional indexing like you might use in other databases isn't applicable
because BigQuery is a fully-managed data warehouse that handles data storage
differently to optimize for analytics at scale. Instead of using indexes, BigQuery
automatically manages the data storage and retrieval processes to optimize
performance.

However, there are ways to optimize your data structure in BigQuery to improve query
performance, akin to indexing:

1. Partitioning and Clustering

While BigQuery does not use traditional indexes, you can optimize query performance
through partitioning and clustering:

Partitioning: As mentioned previously, partitioning can help reduce the amount of
data scanned in queries, which reduces costs and increases query speed. You
might partition data on a date column if applicable.

ccast
Highlight

22/192

Clustering: You can cluster your tables by one or more columns. For tables like
CustomersCompetitors, you might cluster by both CustomerID and CompetitorID.
Clustering sorts the data based on the cluster columns within each partition (if the
table is partitioned) or within the table if not partitioned.

Here’s how you might set up a table with clustering on CustomerID and
CompetitorID:

sql

CREATE TABLE your_dataset.CustomersCompetitors (
 CustomerID INT64,
 CompetitorID INT64
)
CLUSTER BY CustomerID, CompetitorID;

2. Use of Materialized Views

For frequently executed and computationally expensive queries, consider using
materialized views. A materialized view is a precomputed view that periodically caches
the result of a query for faster access:

This can be especially beneficial for complex joins or aggregations that are
frequently used. It's like creating a pre-indexed snapshot of your data based on
specific query patterns.

3. Optimizing Query Performance

Avoid SELECT *: Always try to specify which columns you need in your SELECT
statements to avoid scanning unnecessary data.
Use WHERE clauses effectively: Make sure your queries include conditions to
filter data as much as possible, reducing the amount of data processed.

4. Monitoring and Fine-Tuning

Query Execution Details: BigQuery provides detailed execution plans for your
queries, which can help identify which parts of your query are taking the most time
or processing the most data.

23/192

BigQuery Query Plan Explanation: Use the EXPLAIN statement to see a detailed
breakdown of how BigQuery plans to execute your SQL queries.

By understanding and utilizing these features, you can significantly optimize how your
data is stored and accessed in BigQuery, mimicking the benefits of traditional database
indexing and improving your query performance.

We are missing one key aspect of this implementation, which is to store
historical data about competitors. We will want to be able to look at the
executions of our script and the data it collected for a customer or
competitor at various dates. This way we can have a historical record of
what our customer data and their competitor data looks like. I've mapped
out a new table in our database diagram called "Business Data" table. The
Business Data table will store information about the customer or
competitor using a BusinessID which can either be the CustomerID or
CompetitorID. Can you tell me if this is an adequate setup for our needs?

Your updated diagram and the addition of the "Business Data" table to store historical
data about customers and competitors look promising for achieving your goal of tracking
changes over time. Here are a few considerations and potential adjustments to ensure
your setup is optimized for your needs:

Review of the "Business Data" Table Setup

BusinessID: It’s a good idea to use a generic identifier like BusinessID, which can
reference either a CustomerID or a CompetitorID. This approach simplifies the
schema and makes it versatile to store data for both entities.
Query ID: Including the Query ID allows for tracing back which specific queries
generated this data, enhancing traceability.
Review Count and Velocity: Storing these metrics with dates allows for trend
analysis over time.
Date Field: The inclusion of a Date field is crucial as it will enable you to perform
time-based queries and see how data trends over different periods.

Recommendations and Considerations

1. Clarity on BusinessID: Ensure that there's a clear method to differentiate whether
a BusinessID refers to a customer or a competitor. You might consider adding an
additional column like BusinessType with values such as "Customer" or
"Competitor" to make queries straightforward and avoid confusion.

ccast
Highlight

24/192

2. Indexing: Since you'll likely query this table frequently using BusinessID, Query
ID, and Date, consider clustering the table based on these columns. This
approach will optimize the performance of queries filtering by these attributes.

3. Data Integrity and Normalization:

Make sure there is a robust method to maintain data integrity, especially
since BusinessID can refer to two different types of entities. Using foreign
keys or application-level checks can help maintain consistency.
If the volume of data becomes significantly large, consider whether
partitioning by Date might be beneficial for query performance and cost
optimization.

4. Historical Data Management:

Determine how often you'll snapshot the data. If you’re capturing data
changes frequently, ensure that your storage and querying strategy remains
cost-effective.
Consider implementing a data retention policy if historical data grows
extensively to manage costs in BigQuery.

5. Security and Access Control: Given that this table will accumulate sensitive
competitive information over time, carefully manage who has read and write
access to this data.

Your planned setup appears well-suited for tracking historical changes in competitor and
customer data. Just make sure to address the potential for ambiguity with the
BusinessID and consider enhancing your table structure for better performance and
data management. This proactive planning will help you leverage BigQuery’s capabilities
efficiently while ensuring your data remains manageable and useful for analytical
purposes.

Sorry, I made a mistake in the diagram. The columns for the BusinessData
table are as follows: - RecordID (Integer, Required) - BusinessID (Integer,
Required) - BusinessType (String, 20 max length, Required) -
ReviewCount (Integer, Nullable) - AverageRating (Float, Nullable) - Date
(Required) This table was created as described above in BigQuery, and
incorporates your suggestion for a BusinessType column which can be
"Customer" or "Competitor". I've set the length for the BusinessType to 20
characters in case we expand the functionality of this system to include
other options in the future.

ccast
Highlight

25/192

Your updated structure for the "BusinessData" table in BigQuery looks well-considered
and effectively addresses the requirement to track historical data for both customers and
competitors. Here are some key aspects that strengthen your setup:

Key Aspects of the Updated "BusinessData" Table

1. RecordID: Using a unique identifier for each record enhances data management
and querying efficiency. This field can serve as a primary key within BigQuery,
helping to ensure that each entry is unique and easily accessible.

2. BusinessID and BusinessType: These fields together provide a flexible yet
robust way to distinguish between customers and competitors, as well as
potentially other types of business entities in the future. This design choice
enhances the adaptability of your database.

3. ReviewCount and AverageRating: Storing these metrics allows for detailed
analysis over time, providing insights into trends and changes in the review
landscape.

4. Date: Including a specific date for each record is crucial for historical analysis and
trend monitoring. This allows you to perform time-series analyses and track the
evolution of data over time.

Additional Recommendations

Clustering and Partitioning: Given that you'll likely query this table frequently by
date, consider partitioning the table by the Date field. Additionally, clustering the
table by BusinessID and BusinessType can further optimize query performance by
organizing the data in a way that aligns with common query patterns.

Data Integrity Checks: Implement checks either within BigQuery (using SQL
queries to check for duplicates or inconsistencies before inserting data) or in your
application logic to ensure that the data remains consistent and reliable.

Data Management Strategies: As your data grows, consider implementing
lifecycle management policies in BigQuery. These can help manage costs and
performance by automatically managing older data, such as downgrading the
storage class of data that is no longer accessed frequently.

Security and Compliance: Ensure that access controls are appropriately
configured to protect sensitive data, especially given that this table will store
competitive business information.

26/192

Your setup is well-positioned to provide robust historical insights into your customers
and competitors, facilitating detailed analytics and strategic decision-making based on
historical data trends. If you need further assistance with query optimization or data
management strategies in BigQuery, feel free to ask!

BigQuery only lets us use one field to partition the table by, so I am going
to set up partitioning on the BusinessID field. When I select the BusinessID
field for partitioning, BigQuery is asking for a WHERE clause. The fields
required are: Start, End, Interval, and Clustering Order. What should I
enter here?

The partition settings you're seeing are specific to range-based partitioning in BigQuery,
which allows you to divide a table into segments based on integer values in a specified
column. Here's how to configure it based on the BusinessID, and an explanation of each
setting:

Range Partitioning Setup

1. Start: This is the starting value of your partitioning key range. You'll want to
choose a value that reflects the smallest possible BusinessID you expect to use. If
BusinessID starts at 1, then you would set this to 1.

2. End: This is the ending value of your partitioning key range and must be greater
than the Start value. You need to estimate the highest BusinessID you expect to
reach. For example, if you don’t expect to exceed 10,000 records soon, you might
set this to 10,001 (since End is exclusive).

3. Interval: This setting defines the range width for each partition. For example,
setting this to 100 means that each partition will contain 100 Business IDs. The
appropriate value depends on the distribution and total number of Business IDs
you expect. If you have thousands of Business IDs, larger intervals might make
sense to reduce the number of partitions created.

4. Clustering Order: Since BigQuery supports both partitioning and clustering, you
can specify one or more columns for clustering within each partition. For the
BusinessData table, you might consider clustering by Date and BusinessType to
further improve query performance.

Considerations and Recommendation

ccast
Highlight

27/192

Range Partitioning on BusinessID: It may not be the best choice if BusinessID
is not sequentially assigned or if the range of BusinessID is too broad, as it can
lead to unbalanced partitions or inefficient querying.

Alternative Partitioning Approach: Given that your data has a Date field, time-
based (date or timestamp) partitioning might be more beneficial, especially for
analytical queries that often span time periods. Date-based partitioning would
naturally align with querying patterns that analyze trends over time.

Using Clustering: If you opt for date-based partitioning, clustering by BusinessID
and BusinessType would help optimize performance for queries that focus on
specific businesses or types of business.

Given these points, if you still wish to proceed with range partitioning by BusinessID, the
values you choose for Start, End, and Interval should reflect your expected distribution
of Business IDs. If your use case strongly supports it, setting it up with reasonable
estimates for these values will work; otherwise, reconsidering the partitioning strategy to
align with query patterns may be beneficial.

Can partitioning be set up after the table is created, or only at the time of
creation?

In BigQuery, partitioning a table needs to be specified at the time of table creation. Once
a table is created without partitioning, you cannot directly modify its schema to add
partitioning. However, if you need to change the partitioning on an existing table, you
can follow these steps:

How to Add Partitioning to an Existing Table

1. Create a New Table with Partitioning:

Define the schema and partitioning settings when creating a new table.
You can use the BigQuery web UI, command-line tool, or API to create the
table with the desired partition settings.

ccast
Highlight

28/192

2. Copy Data from the Old Table:

You can copy the data from the existing non-partitioned table to the new
partitioned table. This can be done with a simple SQL query like:

sql

CREATE TABLE new partitioned table
PARTITION BY DATE(timestamp column)
AS
SELECT * FROM existing_table;

3. Verify the Data:

Ensure that all data has been transferred correctly to the new partitioned
table.

4. Delete the Old Table (Optional):

Once you confirm the data is correctly copied and the new table is
functioning as expected, you can delete the old table. However, it’s often
wise to keep the old table until you are completely sure that everything is
working as expected.

5. Redirect Queries to the New Table:

Update any queries, views, or data sources that referenced the old table to
now use the new partitioned table.

Considerations

Downtime: Depending on the size of the data and the complexity of the schema,
this process might take some time and could potentially lead to temporary
unavailability of the data.
Cost: Copying data between tables incurs query costs based on the amount of
data processed, especially if you are performing a full table scan.
Data Consistency: Ensure that any ongoing data operations that might affect the
old table are paused or handled appropriately during the migration to avoid data
inconsistencies.

29/192

Setting up partitioning correctly from the beginning is crucial because altering partition
settings post-creation can be cumbersome and costly. If you anticipate the need for
partitioning in the future, it is best to implement it during the initial table setup.

We are expecting to have a maximum of 500 Customer records. For each
customer record, we are expecting a maximum of 50 competitors. We are
going to be running this system once a month, and storing data for
competitors and customers once every month. What values would you
recommend that I use in the WHERE clause for the partitioning for
BusinessID in the BusinessData table?

Given your specific use case details, setting up partitioning effectively requires a
strategic approach to ensure performance optimization and cost efficiency. Considering
that each customer could have up to 50 competitors, and you're expecting to update this
data monthly, the distribution of BusinessID values needs to be analyzed for the most
efficient partitioning strategy.

Understanding Your Data Distribution

Maximum Records: If you have up to 500 customers and each could have up to
50 competitors, you potentially have 500×50=25,000 competitor records plus 500
customer records, totaling up to 25,500 potential unique BusinessID values if
every competitor and customer is assigned a unique ID.

Setting Up Partitioning by BusinessID

Partitioning by BusinessID: Since you are dealing with a defined range of IDs
that can be large, range partitioning could be used effectively if your queries
frequently involve specific ranges of BusinessID. However, the usefulness of this
partitioning strategy depends heavily on your typical query patterns.

Recommended Values for WHERE Clause in Range Partitioning

Here's how to configure the range partition settings based on the expected distribution of
BusinessID:

1. Start Value: Begin with the smallest BusinessID you expect, which is typically 1.
2. End Value: Consider a slightly higher value than your maximum expected

BusinessID to allow for some growth. If you're expecting around 25,500 records
initially, setting this to about 30,000 might be a safe buffer.

ccast
Highlight

30/192

3. Interval: The interval should be set based on how you expect BusinessID values
to be accessed. If access patterns are fairly evenly distributed across the range,
you could choose an interval that creates a manageable number of partitions. For
example, setting an interval of 1,000 might result in about 30 partitions, which
could be a good balance between too many small partitions and too few large
ones.

Example Configuration

Start: 1
End: 30,000
Interval: 1,000

Alternative Consideration: Partitioning by Date

Given that you are updating this data monthly, another effective strategy might be to
partition the table by a Date field instead, if your primary query pattern involves filtering
by specific months or date ranges. This approach could naturally align with your data
update frequency and might be more efficient if your analysis is time-based.

Conclusion

Setting up partitioning effectively requires a deep understanding of both your data and
your query needs. If your queries often involve specific ranges of BusinessID, the
suggested range partitioning could work well. Otherwise, consider whether partitioning
by date or even clustering by BusinessID within date partitions might be more aligned
with how you'll access the data.

Is there a downside to setting this up for growth of up to 2x? So 51,000
total records?

Setting up your partitioning to accommodate up to 2x growth, reaching 51,000 total
records, is a proactive approach that can help future-proof your database schema in
BigQuery. Here are some considerations and potential downsides to keep in mind when
planning for such growth:

Benefits of Planning for Growth

1. Scalability: Preparing for a higher range of BusinessID values ensures that you
won't need to perform costly schema migrations or adjustments as your data
grows.

2. Flexibility: Allows more room for adding new customers and competitors without
immediate concerns about exceeding the partition range limits.

ccast
Highlight

31/192

Potential Downsides and Considerations

1. Partition Efficiency: The main downside of setting a very wide range for
partitioning is the potential inefficiency in partition usage. If the data is not evenly
distributed across the entire range, some partitions may end up underutilized,
leading to less efficient queries. This is particularly relevant if many BusinessIDs
cluster in specific ranges and leave other ranges sparse.

2. Cost Implications: BigQuery charges for queries based on the amount of data
processed. If partitions are not optimally utilized (e.g., many empty or sparse
partitions), you may end up scanning more data than necessary, leading to higher
query costs. However, this is more of a concern with extremely large datasets or
very high query volumes.

3. Management Complexity: With a wider range of partitions, managing and
monitoring these partitions might be slightly more complex, especially if you need
to adjust your setup as your understanding of the data distribution evolves.

Recommendations

Given the scale you are working with (up to 51,000 records expected in the foreseeable
future), the potential downsides are likely minimal and manageable, especially when
weighed against the benefits of not having to reconfigure your partitioning setup as you
grow. Here are some additional tips:

Monitor Data Distribution: Regularly review how your data is distributed across
partitions. BigQuery provides detailed information about table storage and usage,
which can help you adjust your partitioning strategy if necessary.
Consider Clustering: Alongside range partitioning, consider clustering your table
by other key columns like Date or BusinessType to further enhance query
performance. Clustering can help ensure that data within each partition is
organized efficiently.
Periodic Reviews: As your database grows and your business evolves,
periodically review your partitioning strategy to ensure it still aligns with your data
access patterns and performance objectives.

Planning for a 2x growth in your partitioning strategy is generally a sound decision,
especially in a managed environment like BigQuery where the management overhead is
relatively low compared to traditional database systems.

Can you provide the values I should use for partitioning given a total of
51,000 records?

ccast
Highlight

32/192

For partitioning your table in BigQuery to efficiently manage up to 51,000 records, you'll
need to set the range partitioning parameters appropriately. Here’s a recommendation
for setting up the range partitioning with 51,000 records:

Range Partitioning Setup

1. Start Value:

Start from the lowest possible BusinessID, which is typically 1, assuming
BusinessID starts at this value.

2. End Value:

Since the end value in BigQuery’s range partitioning is exclusive, you should
set this slightly above your maximum expected BusinessID. If you’re
planning for up to 51,000 records, setting the end value at 52,000 or 55,000
provides a buffer that accommodates slight growth beyond your current
projection.

3. Interval:

The interval determines the range width of each partition. To optimize
partitioning and balance the number of partitions against the potential query
performance benefits, you can choose an interval that results in a
manageable number of partitions.
A common approach is to set the interval so that each partition covers a
range of values that is neither too small (leading to too many partitions) nor
too large (which could reduce the performance benefits of partitioning).
For example, setting the interval at 1,000 would result in about 51 or 55
partitions (depending on whether you choose 52,000 or 55,000 as the end
value). This should provide a good balance by creating partitions that are not
too granular but still effective for query performance.

Example Configuration

Start: 1
End: 55,000
Interval: 1,000

This setup will create partitions that each cover a range of 1,000 unique BusinessID
values, making it easier for BigQuery to manage and query the data efficiently. This
configuration is beneficial if queries frequently filter or perform operations based on
ranges of BusinessID.

Final Considerations

33/192

Query Patterns: Ensure that this partitioning aligns with your common query
patterns. For example, if queries frequently access data based on BusinessID, this
setup is suitable.
Monitoring and Adjustment: After implementing partitioning, monitor the
performance and storage metrics provided by BigQuery to see if the partitioning
strategy is effective. Be prepared to adjust the parameters if you find that the data
distribution or query performance could be optimized further.

By setting up your partitioning parameters in this way, you should achieve a good
balance between manageability and performance for your expected scale.

For clustering order, it seems to me that the Date field would make the
most sense. Is that a fair conclusion?

Yes, your conclusion to use the Date field for clustering in BigQuery is indeed a fair and
strategic choice, especially given the nature of your dataset and the likely query
patterns. Clustering by Date offers several advantages:

Advantages of Clustering by Date

1. Efficiency in Time-based Queries: Clustering by Date can significantly enhance
the performance of queries that filter or aggregate data based on specific time
periods. This is particularly useful for historical analyses or trend monitoring, where
queries often involve date ranges.

2. Reduced Costs: By clustering on the Date field, BigQuery can more efficiently
locate and process only the relevant partitions of data needed for a query,
reducing the amount of data scanned and consequently lowering query costs.

3. Improved Query Performance: Clustering organizes the data within each
partition into sorted blocks based on the Date values. This sorting allows BigQuery
to quickly prune large volumes of data that fall outside the time range specified in
queries, speeding up the execution time.

Additional Clustering Considerations

Multiple Clustering Columns: While clustering by Date is effective, you can also
consider clustering by additional dimensions if your queries frequently involve
other specific fields. For instance, clustering by both Date and BusinessType
might be beneficial if you often need to perform operations that span both these
attributes.

ccast
Highlight

34/192

Alignment with Partitioning: If you have partitioned the data (for example, by
BusinessID or another field), adding clustering on Date complements the
partitioning by further refining the organization of data within each partition,
enhancing the query performance even more.

Implementing Clustering

When you create or modify a table to include clustering in BigQuery, specify the
clustering columns in the table creation statement. For your case, here’s how you might
specify clustering when creating a table:

sql

CREATE TABLE your dataset.your table name (
 RecordID INT64,
 BusinessID INT64,
 BusinessType STRING,
 ReviewCount INT64,
 AverageRating FLOAT64,
 Date DATE
)
PARTITION BY DATE
CLUSTER BY Date
OPTIONS(
 description "A table to store business data with partitioning by Date and
clustering by Date for optimal query performance."
);

This SQL statement sets up a table with Date as both the partitioning and clustering
column. Adjust the PARTITION BY clause if you decide to partition by a different field.

In conclusion, clustering by Date in your scenario is an excellent strategy for optimizing
data access patterns focused on time-based queries, which are common in analytical
and historical data analysis environments. This setup should provide a solid foundation
for efficient and cost-effective data management in BigQuery.

Okay, great. Here is the final BusinessData table: - RecordID (Integer,
Required) - RecordDate (Date, Required) **Change name to avoid using a
reserved word like 'date' - BusinessID (Integer, Required) - BusinessType

ccast
Highlight

35/192

(String, 20 max length, Required) - BusinessName (String, 255 max
length, Required) - ReviewCount (Integer, Nullable) - AverageRating
(Float, Nullable) I added a column for "BusinessName" because although
that is stored in the Customers or Competitors tables, businesses
sometimes change their Google Business Profile name. Adding the
BusinessName column to the BusinessData table will allow us to have a
historical record of the business name at the time of the scan.

Your final setup for the BusinessData table looks comprehensive and well-suited to
your needs. Here are some key points about your final table configuration:

Key Points of Your Final BusinessData Table Setup

1. RecordID: Serves as a unique identifier for each record, ensuring easy and
accurate data retrieval.

2. RecordDate: Renaming the Date field to RecordDate is a wise choice to avoid
confusion with the reserved keyword and improve readability in your queries.

3. BusinessID: Continues to serve as a key field to link data across your different
tables.

4. BusinessType: Useful for differentiating between Customers and Competitors
within your data queries, enhancing flexibility.

5. BusinessName: Adding the BusinessName column is a strategic move. It allows
for capturing the business name at the time of data entry, which is crucial for
tracking changes over time, especially given that business names can change.

6. ReviewCount and AverageRating: These fields are essential for tracking the
performance metrics of businesses over time, providing insights into trends and
changes in performance metrics.

Additional Recommendations

Partitioning and Clustering: Consider partitioning this table by RecordDate to
optimize query performance over time-based data, and cluster by BusinessID and
BusinessType to further enhance data retrieval efficiency based on your frequent
query patterns.

Data Integrity and Validation: Ensure that data entered into this table is
validated, especially for the non-required fields like ReviewCount and
AverageRating, to maintain data quality.

ccast
Highlight

ccast
Highlight

ccast
Highlight

39/192

2. Monitoring and Logging:

Google Cloud Monitoring: Use Google Cloud Monitoring to set up alerts
based on the function's execution metrics and logs.
Google Cloud Logging: Ensure that logging is properly configured in your
function to capture both operational logs and application-specific events. This
will be crucial for diagnosing issues and understanding the function’s
operational health.

3. Access Control:

Review IAM Settings: Make sure that the IAM settings are correctly
configured to allow only the necessary entities to invoke your function.
Service Account Permissions: Double-check that the service account
associated with your Cloud Function has the appropriate permissions for all
required actions, especially interactions with BigQuery.

4. Optimizing Cloud Function Performance:

Memory and Timeout Settings: Adjust the memory allocation and timeout
settings based on the function's performance and needs.
Cold Starts: If the function's start-up time is a concern (commonly referred to
as "cold starts"), consider strategies to mitigate this, such as keeping the
function warm with scheduled invocations if appropriate.

5. Documentation:

Function Documentation: Document the purpose, usage, and any relevant
details about the function. This documentation will be valuable for both
current understanding and future maintenance.

6. Integrate with Other Services:

If your function needs to interact with other services or triggers within your
Google Cloud environment (like from a Pub/Sub topic or another Cloud
Function), set up those integrations and ensure they are securely
authenticated.

By following these steps, you'll not only ensure that your Cloud Function is secure and
reliable but also well-integrated and monitored within your broader cloud architecture. If
you have any specific questions about the function's implementation or encounter any
issues during testing, feel free to ask for help!

I have set the Cloud Function to use the Python 3.10 runtime. I set the
entry point for the function to "script_init". Please write the python script to
connect to the BigQuery database we created. As a test for now, please
query the Customers table for all records and output them in a log or other
debugging method.

ccast
Highlight

41/192

python

from google.cloud import bigquery
import json

def script_init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 <http://flask.pocoo.org/docs/1.0/api/#flask.Request>
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`
 <http://flask.pocoo.org/docs/1.0/api/#flask.Flask.make_response>.
 """
 # Instantiate a BigQuery client
 client = bigquery.Client()

 # Define the query
 query = """
 SELECT * FROM `your-project-id.your-dataset.Customers`
 """

 # Perform the query
 query_job = client.query(query) # Make an API request

 # Collect and log the results
 customers = query_job.result() # Waits for the job to complete

 # Output the results
 for customer in customers:
 print(json.dumps({"CustomerID": customer.get("CustomerID"),
"CustomerName": customer.get("CustomerName")}))

 return "Query executed successfully!"

Notes on the Script:

1. Client Initialization: The script initializes a BigQuery client using the
google.cloud.bigquery library. This client handles all interactions with the
BigQuery service.

ccast
Highlight

44/192

python

import functions_framework
from google.cloud import bigquery
import json

@functions_framework.http
def script_init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 # Instantiate a BigQuery client
 client = bigquery.Client()

 # Define the query
 query = """
 SELECT * FROM `your-project-id.your-dataset.Customers`
 """

 # Perform the query
 query_job = client.query(query) # Make an API request

 # Collect and log the results
 customers = query_job.result() # Waits for the job to complete

 # Output the results
 output = []
 for customer in customers:
 output.append({
 "CustomerID": customer.get("CustomerID"),
 "CustomerName": customer.get("CustomerName")
 })

 # Return the results as JSON
 return json.dumps(output, indent=2), 200, {'Content-Type':
'application/json'}

Explanation

ccast
Highlight

48/192

python

import functions_framework
from google.cloud import bigquery
import json

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make response`.
 """
 # Instantiate a BigQuery client
 client = bigquery.Client()

 # Define the query with your project ID and dataset
 query = """
 SELECT * FROM `agency-seo-tools-
318618.CustomerGbpCompetitors.Customers`
 """

 # Perform the query
 query job client.query(query) # Make an API request

 # Collect and log the results
 customers query job.result() # Waits for the job to complete

 # Output the results
 output []
 for customer in customers:
 output.append({
 "CustomerID": customer.get("CustomerID"),
 "CustomerName": customer.get("CustomerName")
 })

 # Return the results as JSON
 return json.dumps(output, indent=2), 200, {'Content-Type':
'application/json'}

Testing

49/192

Deploy this updated function to your Google Cloud Function.
Invoke the function using the provided HTTP URL to see if it correctly retrieves
and logs the customer data.

If you encounter any issues or need further adjustments, feel free to ask!

Can you write a BigQuery query that inserts the following data into the
Customers table: CustomerID | Customer Name 1 |

 2 | KCS Kitchener Cleaning Services 3 |
4 |

Certainly! To insert data into the Customers table in BigQuery, you can use the INSERT
statement. Here is the SQL query to insert the specified customer data into your
Customers table:

sql

INSERT INTO `agency-seo-tools-318618.CustomerGbpCompetitors.Customers`
(CustomerID, CustomerName)
VALUES
 (1, ' '),
 (2, 'KCS Kitchener Cleaning Services'),
 (3, ' '),
 (4, ' ');

Explanation

Table Reference: Make sure the table reference agency-seo-tools-
318618.CustomerGbpCompetitors.Customers is correct, based on your dataset
and table name in BigQuery.
Columns: The INSERT statement specifies the columns CustomerID and
CustomerName, matching the columns in your table.
Values: Each pair of parentheses contains the values for a new row in the
Customers table.

Executing the Query

ccast
Highlight

ccast
Highlight

50/192

1. BigQuery Console:

Go to the BigQuery Console.
Open the query editor and paste the SQL statement above.
Click "Run" to execute the query and insert the data into your table.

2. Using the BigQuery Client Library:

If you want to execute this query programmatically (e.g., from your Cloud
Function or a Python script), you can use the BigQuery client library.

Here's how you might execute this insert operation using Python:

python

from google.cloud import bigquery

Instantiate a BigQuery client
client = bigquery.Client()

Define the query
query = """
 INSERT INTO `agency-seo-tools-318618.CustomerGbpCompetitors.Customers`
(CustomerID, CustomerName)
 VALUES
 (1, ' '),
 (2, 'KCS Kitchener Cleaning Services'),
 (3, ' '),
 (4, ' ');
"""

Execute the query
query job client.query(query)

Wait for the query to finish
query job.result()

print("Data inserted successfully.")

Considerations

51/192

Data Uniqueness: Ensure that the CustomerID values are unique if your
application logic assumes CustomerID as a unique identifier.
Error Handling: Implement error handling in your code to manage potential issues
during the data insertion process, such as duplicate entries or connection
problems.

Feel free to let me know if you need further assistance or if there's anything else you'd
like to do with your BigQuery setup!

I tried testing the Cloud Function and I received the following error in the
Cloud Shell. Can you tell me if you have any ideas what went wrong?
[5:13:14 PM] - [2024-08-08 21:13:14,991] ERROR in app: Exception on /
[POST] Traceback (most recent call last): File
"/layers/google.python.pip/pip/lib/python3.10/site-packages/flask/app.py",
line 1473, in wsgi_app response = self.full_dispatch_request() File
"/layers/google.python.pip/pip/lib/python3.10/site-packages/flask/app.py",
line 882, in full_dispatch_request rv = self.handle_user_exception(e) File
"/layers/google.python.pip/pip/lib/python3.10/site-packages/flask/app.py",
line 880, in full_dispatch_request rv = self.dispatch_request() File
"/layers/google.python.pip/pip/lib/python3.10/site-packages/flask/app.py",
line 865, in dispatch_request return
self.ensure_sync(self.view_functions[rule.endpoint])(**view_args) # type:
ignore[no-any-return] File
"/layers/google.python.pip/pip/lib/python3.10/site-
packages/functions_framework/execution_id.py", line 106, in wrapper
return view_function(*args, **kwargs) File
"/layers/google.python.pip/pip/lib/python3.10/site-
packages/functions_framework/__init__.py", line 142, in view_func return
function(request._get_current_object()) File
"/layers/google.python.pip/pip/lib/python3.10/site-
packages/functions_framework/__init__.py", line 121, in wrapper return
func(*args, **kwargs) File "/workspace/main.py", line 22, in script_init
query_job = client.query(query) # Make an API request File
"/layers/google.python.pip/pip/lib/python3.10/site-
packages/google/cloud/bigquery/client.py", line 3391, in query future =
do_query() File "/layers/google.python.pip/pip/lib/python3.10/site-
packages/google/cloud/bigquery/client.py", line 3368, in do_query
query_job._begin(retry=retry, timeout=timeout) File
"/layers/google.python.pip/pip/lib/python3.10/site-
packages/google/cloud/bigquery/job/query.py", line 1297, in _begin
super(QueryJob, self)._begin(client=client, retry=retry, timeout=timeout)
File "/layers/google.python.pip/pip/lib/python3.10/site-

ccast
Highlight

ccast
Highlight

54/192

Ensure your BigQuery client is correctly instantiated and the query is accurate:

55/192

python

import functions_framework
from google.cloud import bigquery
import json

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make response`.
 """
 # Instantiate a BigQuery client with the correct project ID
 client = bigquery.Client(project="agency-seo-tools-318618")

 # Define the query with your correct project ID and dataset
 query = """
 SELECT * FROM `agency-seo-tools-
318618.CustomerGbpCompetitors.Customers`
 """

 # Perform the query
 try:
 query job client.query(query) # Make an API request
 customers query job.result() # Waits for the job to complete

 # Output the results
 output []
 for customer in customers:
 output.append({
 "CustomerID": customer.get("CustomerID"),
 "CustomerName": customer.get("CustomerName")
 })

 # Return the results as JSON
 return json.dumps(output, indent=2), 200, {'Content-Type':
'application/json'}
 except Exception as e:
 return f"An error occurred: {str(e)}", 500

56/192

Additional Steps

Logging: Use logging to capture more details in the Cloud Functions logs, which
can help identify any other issues.
Testing in Console: Manually verify that you can run the SQL query in the
BigQuery Console to ensure it returns results as expected.

By addressing these common issues, you should be able to resolve the error and
successfully connect to and query your BigQuery dataset from your Cloud Function. If
the issue persists, consider enabling more detailed logging or checking for additional
error messages in the Cloud Functions logs.

That worked! Okay, now let's populate some data into the BigQuery
database for CustomerQueries so we can test a lookup of all customers
and their respective queries. Can you write an SQL query that will add the
following queries for each customer: :

: KCS Kitchener

Cleaning Services: commercial cleaning commercial cleaning cambridge
commercial cleaning company house cleaners cambridge house cleaning
cambridge :

Certainly! To insert the specified queries into the CustomerQueries table in BigQuery for
each customer, you can use an INSERT statement. Here’s the SQL query to add the
data:

ccast
Highlight

ccast
Highlight

ccast
Highlight

57/192

sql

INSERT INTO `agency-seo-tools-
318618.CustomerGbpCompetitors.CustomerQueries` (QueryID, Query, CustomerID)
VALUES

 (1, ' ', 1),
 (2, ' ', 1),
 (3, ' ', 1),
 (4, ' ', 1),
 (5, ' ', 1),
 (6, ' ', 1),

 (7, ' ', 3),
 (8, ' ', 3),

 -- KCS Kitchener Cleaning Services
 (9, 'commercial cleaning', 2),
 (10, 'commercial cleaning cambridge', 2),
 (11, 'commercial cleaning company', 2),
 (12, 'house cleaners cambridge', 2),
 (13, 'house cleaning cambridge', 2),

 (14, ' ', 4),
 (15, ' ', 4),
 (16, ' ', 4),
 (17, ' ', 4);

Explanation

QueryID: This is a unique identifier for each query. Ensure that these IDs are
unique within the table and increment sequentially.
Query: The actual search query string associated with each customer.
CustomerID: This refers to the CustomerID from the Customers table, linking each
query to the appropriate customer.

Executing the Query

ccast
Highlight

59/192

Sure! Let's update the Python script for your Cloud Function to query both the
Customers and CustomerQueries tables and return the data in a structured JSON
format. Here's how you can modify the script to achieve this:

Updated Python Script

60/192

python

import functions_framework
from google.cloud import bigquery
import json

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make response`.
 """
 # Instantiate a BigQuery client
 client = bigquery.Client(project="agency-seo-tools-318618")

 # Define the query to join Customers and CustomerQueries
 query = """
 SELECT
 c.CustomerName,
 q.Query
 FROM
 `agency seo tools 318618.CustomerGbpCompetitors.Customers` c
 JOIN
 `agency seo tools
318618.CustomerGbpCompetitors.CustomerQueries` q
 ON
 c.CustomerID q.CustomerID
 ORDER BY
 c.CustomerName, q.Query;
 """

 # Perform the query
 try:
 query_job = client.query(query) # Make an API request
 results = query_job.result() # Waits for the job to complete

 # Create a dictionary to hold customers and their queries
 customer_queries = {}
 for row in results:
 customer_name = row.get("CustomerName")
 query_text = row.get("Query")

 if customer_name not in customer_queries:

ccast
Highlight

63/192

sql

ALTER TABLE `agency-seo-tools-318618.CustomerGbpCompetitors.Customers`
ADD COLUMN SearchLocation STRING;

Example Data Population

After adding the column, you can insert location data like this:

sql

UPDATE `agency seo tools 318618.CustomerGbpCompetitors.Customers`
SET SearchLocation 'Toronto'
WHERE CustomerName ' ';

UPDATE `agency seo tools 318618.CustomerGbpCompetitors.Customers`
SET SearchLocation 'Winnipeg'
WHERE CustomerName ' ';

UPDATE `agency seo tools 318618.CustomerGbpCompetitors.Customers`
SET SearchLocation 'Cambridge'
WHERE CustomerName = 'KCS Kitchener Cleaning Services';

UPDATE `agency-seo-tools-318618.CustomerGbpCompetitors.Customers`
SET SearchLocation = 'Toronto'
WHERE CustomerName = ' ';

Updating the Cloud Function

In your Cloud Function, you can now retrieve SearchLocation for each customer and
incorporate it into your API call logic. Here's a brief update to the query to include
SearchLocation:

ccast
Highlight

65/192

sql

ALTER TABLE `agency-seo-tools-318618.CustomerGbpCompetitors.Customers`
ADD COLUMN SearchLocation STRING NOT NULL;

Populating SearchLocation Data

Here's the SQL to update your existing records with the specified location format:

sql

UPDATE `agency seo tools 318618.CustomerGbpCompetitors.Customers`
SET SearchLocation 'Toronto,Ontario,Canada'
WHERE CustomerName ' ';

UPDATE `agency seo tools 318618.CustomerGbpCompetitors.Customers`
SET SearchLocation 'Winnipeg,Manitoba,Canada'
WHERE CustomerName ' ';

UPDATE `agency seo tools 318618.CustomerGbpCompetitors.Customers`
SET SearchLocation 'Cambridge,Ontario,Canada'
WHERE CustomerName = 'KCS Kitchener Cleaning Services';

UPDATE `agency-seo-tools-318618.CustomerGbpCompetitors.Customers`
SET SearchLocation = 'Toronto,Ontario,Canada'
WHERE CustomerName = ' ';

Explanation

ccast
Highlight

67/192

2. Data Loading and Validation:

When loading data into BigQuery, perform a pre-load validation step to
ensure that all required fields, such as SearchLocation, are present and
correctly formatted.
Use scheduled queries to identify and handle any records that might be
missing required data. For example, you can set up periodic checks to
ensure there are no NULL values in the SearchLocation column.

3. Using Views:

Create a view that filters out records with missing SearchLocation values.
This view can then be used in applications that require guaranteed presence
of this field.

Example of creating a view:

sql

CREATE OR REPLACE VIEW `agency seo tools
318618.CustomerGbpCompetitors.ValidCustomers` AS
SELECT *
FROM `agency seo tools 318618.CustomerGbpCompetitors.Customers`
WHERE SearchLocation IS NOT NULL;

4. Automated Alerts:

Set up alerts or logs to track any insertions that result in a NULL value for
required fields, so you can take corrective action promptly.

5. Handling Default Values:

If there's a common fallback location, you could set a default value during
data loading if none is provided, though this requires thoughtful handling to
avoid misleading data.

These strategies help maintain data integrity in BigQuery by ensuring that critical fields
like SearchLocation are always populated, even if the database schema itself doesn't
enforce non-null constraints directly. Let me know if there's anything else you'd like to
explore or implement!

ccast
Highlight

69/192

python

import functions_framework
from google.cloud import bigquery
import json
import requests
from requests.auth import HTTPBasicAuth

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 # Set up your DataForSEO API credentials
 api_login =
 api_password =

 # Define the API endpoint
 api_url = "https://api.dataforseo.com/v3/serp/google/maps/task_post"

 # Set up the payload for the request
 payload [
 {
 "language code": "en",
 "location name": "Toronto,Ontario,Canada",
 "keyword": "
 }
]

 # Send a POST request to the DataForSEO API
 try:
 response = requests.post(
 api_url,
 headers={"Content-Type": "application/json"},
 auth=HTTPBasicAuth(api_login, api_password),
 json=payload
)

 # Check if the request was successful
 if response.status_code == 200:
 result = response.json()
 return json.dumps(result, indent=2), 200, {'Content-Type':

ccast
Highlight

72/192

python

import requests
from requests.auth import HTTPBasicAuth
import json

Function to perform a search using the DataForSEO API
def perform_dataforseo_search(keyword, location_name):
 # Set up your DataForSEO API credentials
 api_login =
 api_password =

 # Define the API endpoint
 api_url = "https://api.dataforseo.com/v3/serp/google/maps/task_post"

 # Set up the payload for the request
 payload = [
 {
 "language_code": "en",
 "location_name": location_name,
 "keyword": keyword
 }
]

 # Send a POST request to the DataForSEO API
 response = requests.post(
 api_url,
 headers={"Content-Type": "application/json"},
 auth=HTTPBasicAuth(api_login, api_password),
 json=payload
)

 # Check if the request was successful
 if response.status_code == 200:
 return response.json()
 else:
 raise Exception(f"Error: {response.status_code} - {response.text}")

Step 2: Update main.py

In your main Cloud Function script, import the api_tasks module and use the
perform_dataforseo_search function:

73/192

python

import functions_framework
from google.cloud import bigquery
import json
import api_tasks # Import the api_tasks module

@functions_framework.http
def script_init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 # Instantiate a BigQuery client
 client = bigquery.Client(project="agency-seo-tools-318618")

 # Define the query to join Customers and CustomerQueries
 query = """
 SELECT
 c.CustomerName,
 q.Query,
 c.SearchLocation
 FROM
 `agency-seo-tools-318618.CustomerGbpCompetitors.Customers` c
 JOIN
 `agency-seo-tools-318618.CustomerGbpCompetitors.CustomerQueries` q
 ON
 c.CustomerID = q.CustomerID
 ORDER BY
 c.CustomerName, q.Query;
 """

 try:
 # Perform the query
 query_job = client.query(query) # Make an API request
 results = query_job.result() # Waits for the job to complete

 # Create a dictionary to hold customers and their queries
 customer_queries = {}
 for row in results:
 customer_name = row.get("CustomerName")
 query_text = row.get("Query")
 search_location = row.get("SearchLocation")

74/192

 if customer_name not in customer_queries:
 customer_queries[customer_name] = []

 customer_queries[customer_name].append({
 "query": query_text,
 "location": search_location
 })

 # Perform a sample API request for " "
 # This is just a static test; you can loop through customer_queries
to perform dynamic requests.
 api_result = api_tasks.perform_dataforseo_search("

", "Toronto,Ontario,Canada")

 # Add the API result to the output for demonstration purposes
 output = {
 "customer_queries": customer_queries,
 "api_result": api_result
 }

 # Return the results as JSON
 return json.dumps(output, indent=2), 200, {'Content-Type':
'application/json'}

 except Exception as e:
 return f"An error occurred: {str(e)}", 500

Explanation

api_tasks.py: Contains the perform_dataforseo_search function, which handles
API requests to DataForSEO.
Modularization: Separating API tasks into their own module keeps your code
organized and makes it easier to manage and test.
Importing Modules: You import api_tasks in your main.py script and call the
perform_dataforseo_search function as needed.

Testing

1. Deploy Both Files: Ensure both main.py and api_tasks.py are deployed as part
of your Cloud Function. The deployment process will package all files in the
directory.

2. Invoke the Function: Send a request to the Cloud Function URL to see the
combined results from BigQuery and DataForSEO in the JSON output.

75/192

3. Review Logs: Check the logs in the Cloud Console to debug any issues that may
arise during execution.

This setup allows you to manage API tasks separately, facilitating maintenance and
scalability of your application. If you have further questions or need additional
functionality, feel free to ask!

Great. I chose a different name for the api python file. I named the file
"dfseo_api.py". I changed all necessary references in the code you
provided as well. When the script was tested we received an error that the
request entity was too large. I believe this is because the DataForSEO API
returned too much data to process or output in the test. I will provide
sample output provided by the DataForSEO API documentation below. We
only want to output the names of the business found in the "items" JSON
array that is found in the data that the API returns. Also, we need to update
the API request in the dfseo_api.py file to use the following URL:
https://api.dataforseo.com/v3/serp/google/maps/live/advanced. We also
need to specifically request the API to return the top 6 results by using the
"depth" api parameter. Sample Output: { "version": "0.1.20230705",
"status_code": 20000, "status_message": "Ok.", "time": "4.0977 sec.",
"cost": 0.002, "tasks_count": 1, "tasks_error": 0, "tasks": [{ "id":
"08021555-1535-0139-0000-462b80e927f7", "status_code": 20000,
"status_message": "Ok.", "time": "4.0299 sec.", "cost": 0.002,
"result_count": 1, "path": ["v3", "serp", "google", "maps", "live", "advanced"
], "data": { "api": "serp", "function": "live", "se": "google", "se_type": "maps",
"language_code": "en", "location_code": 2840, "keyword": "albert einstein",
"depth": 3, "device": "desktop", "os": "windows" }, "result": [{ "keyword":
"albert einstein", "type": "maps", "se_domain": "google.com",
"location_code": 2840, "language_code": "en", "check_url":
"https://google.com/maps/search/albert+einstein/@37.09024,-95.712891,4z?
hl=en&gl=US&uule=w+CAIQIFISCQs2MuSEtepUEUK33kOSuTsc",
"datetime": "2023-08-02 12:55:43 +00:00", "spell": null, "item_types": [
"maps_search"], "se_results_count": 0, "items_count": 3, "items": [{
"type": "maps_search", "rank_group": 1, "rank_absolute": 1, "domain": null,
"title": "Albert Einstein Statue", "url": null, "contact_url": null, "rating": null,
"rating_distribution": null, "snippet": "6700 NW 35th St, Bethany, OK
73008", "address": "6700 NW 35th St, Bethany, OK 73008",
"address_info": { "borough": "Central Oklahoma City", "address": "6700
NW 35th St", "city": "Bethany", "zip": "73008", "region": "Oklahoma",
"country_code": "US" }, "place_id": "ChIJSe0feYkFsocRajueupcvpas",
"phone": null, "main_image":
"https://lh5.googleusercontent.com/p/AF1QipOfM59_liNdL9hmEDbU0_K1uTSv4psb

ccast
Highlight

76/192

h541-k-no", "total_photos": 12, "category": "Tourist attraction",
"additional_categories": null, "category_ids": ["tourist_attraction"],
"work_hours": { "timetable": null, "current_status": "close" }, "feature_id":
"0x87b20589791fed49:0xaba52f97ba9e3b6a", "cid":
"12368344280360434538", "latitude": 35.5064351, "longitude":
-97.6317255, "is_claimed": false, "local_justifications": null,
"is_directory_item": false, "price_level": null, "hotel_rating": null }, { "type":
"maps_search", "rank_group": 2, "rank_absolute": 2, "domain":
"www.nasonline.org", "title": "Albert Einstein Memorial", "url":
"http://www.nasonline.org/about-nas/visiting-nas/nas-building/the-einstein-
memorial.html", "contact_url": null, "rating": { "rating_type": "Max5", "value":
4.7, "votes_count": 1283, "rating_max": null }, "rating_distribution": { "1": 4,
"2": 8, "3": 51, "4": 194, "5": 1026 }, "snippet": "2101 Constitution Ave. NW,
Washington, DC 20418", "address": "2101 Constitution Ave. NW,
Washington, DC 20418", "address_info": { "borough": "Northwest
Washington", "address": "2101 Constitution Ave. NW", "city":
"Washington", "zip": "20418", "region": "District of Columbia",
"country_code": "US" }, "place_id": "ChIJJZaaKqm3t4kRbBG17Vcv8Rg",
"phone": null, "main_image":
"https://lh5.googleusercontent.com/p/AF1QipPyOiGml7eII8LgiYGtPh4wzI7g8GP3fZ9
h306-k-no", "total_photos": 2501, "category": "Sculpture",
"additional_categories": ["Monument"], "category_ids": ["sculpture",
"monument"], "work_hours": { "timetable": { "sunday": [{ "open": { "hour":
0, "minute": 0 }, "close": { "hour": 0, "minute": 0 } }], "monday": [{ "open": {
"hour": 0, "minute": 0 }, "close": { "hour": 0, "minute": 0 } }], "tuesday": [{
"open": { "hour": 0, "minute": 0 }, "close": { "hour": 0, "minute": 0 } }],
"wednesday": [{ "open": { "hour": 0, "minute": 0 }, "close": { "hour": 0,
"minute": 0 } }], "thursday": [{ "open": { "hour": 0, "minute": 0 }, "close": {
"hour": 0, "minute": 0 } }], "friday": [{ "open": { "hour": 0, "minute": 0 },
"close": { "hour": 0, "minute": 0 } }], "saturday": [{ "open": { "hour": 0,
"minute": 0 }, "close": { "hour": 0, "minute": 0 } }] }, "current_status": "open"
}, "feature_id": "0x89b7b7a92a9a9625:0x18f12f57edb5116c", "cid":
"1797269780994265452", "latitude": 38.8924028, "longitude":
-77.0484139, "is_claimed": false, "local_justifications": null,
"is_directory_item": false, "price_level": null, "hotel_rating": null }, { "type":
"maps_search", "rank_group": 3, "rank_absolute": 3, "domain":
"www.alberteinsteingroup.com", "title": "The Albert Einstein Group, Inc.",
"url": "http://www.alberteinsteingroup.com/", "contact_url": null, "rating": {
"rating_type": "Max5", "value": 4, "votes_count": 4, "rating_max": null },
"rating_distribution": { "1": 1, "2": 0, "3": 0, "4": 0, "5": 3 }, "snippet": "8710
Converse Business Cir, Converse, TX 78109", "address": "8710 Converse
Business Cir, Converse, TX 78109", "address_info": { "borough":

ccast
Highlight

ccast
Highlight

78/192

python

import requests
from requests.auth import HTTPBasicAuth
import json

def perform_dataforseo_search(keyword, location_name):
 # Set up your DataForSEO API credentials
 api_login =
 api_password =

 # Define the API endpoint for the advanced live Google Maps search
 api_url =
"https://api.dataforseo.com/v3/serp/google/maps/live/advanced"

 # Set up the payload for the request with the depth parameter
 payload = [
 {
 "language_code": "en",
 "location_name": location_name,
 "keyword": keyword,
 "depth": 6 # Limit the number of results to the top 6
 }
]

 # Send a POST request to the DataForSEO API
 response = requests.post(
 api_url,
 headers={"Content-Type": "application/json"},
 auth=HTTPBasicAuth(api_login, api_password),
 json=payload
)

 # Check if the request was successful
 if response.status_code == 200:
 return response.json()
 else:
 raise Exception(f"Error: {response.status_code} - {response.text}")

def extract_business_names(api_response):
 # Extract business names from the API response
 business_names = []
 try:
 tasks = api_response.get("tasks", [])
 for task in tasks:
 result = task.get("result", [])

80/192

python

import functions_framework
from google.cloud import bigquery
import json
import dfseo_api # Import the dfseo_api module

@functions_framework.http
def script_init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 # Instantiate a BigQuery client
 client = bigquery.Client(project="agency-seo-tools-318618")

 # Define the query to join Customers and CustomerQueries
 query = """
 SELECT
 c.CustomerName,
 q.Query,
 c.SearchLocation
 FROM
 `agency-seo-tools-318618.CustomerGbpCompetitors.Customers` c
 JOIN
 `agency-seo-tools-
318618.CustomerGbpCompetitors.CustomerQueries` q
 ON
 c.CustomerID = q.CustomerID
 ORDER BY
 c.CustomerName, q.Query;
 """

 try:
 # Perform the query
 query_job = client.query(query) # Make an API request
 results = query_job.result() # Waits for the job to complete

 # Create a dictionary to hold customers and their queries
 customer_queries = {}
 for row in results:
 customer_name = row.get("CustomerName")
 query_text = row.get("Query")

81/192

 search_location = row.get("SearchLocation")

 if customer_name not in customer_queries:
 customer_queries[customer_name] = []

 customer_queries[customer_name].append({
 "query": query_text,
 "location": search_location
 })

 # Perform a sample API request for " "
 api_response = dfseo_api.perform_dataforseo_search("

", "Toronto,Ontario,Canada")
 business_names = dfseo_api.extract_business_names(api_response)

 # Add the business names to the output for demonstration purposes
 output = {
 "customer_queries": customer_queries,
 "business_names": business_names
 }

 # Return the results as JSON
 return json.dumps(output, indent=2), 200, {'Content-Type':
'application/json'}

 except Exception as e:
 return f"An error occurred: {str(e)}", 500

Explanation

API Request and Parsing: The perform_dataforseo_search function sends the
API request, and the extract_business_names function extracts the business
names from the response.
JSON Output: The response now includes only the business names, reducing the
size of the data returned and focusing on the relevant information.

Testing

1. Deploy Both Files: Ensure both main.py and dfseo_api.py are deployed as part
of your Cloud Function package.

2. Invoke the Function: Send a request to your Cloud Function URL and verify that
the JSON output includes the business names extracted from the API response.

3. Review Logs: Check the logs in the Google Cloud Console to troubleshoot any
issues and verify successful execution.

ccast
Highlight

83/192

python

import requests
from requests.auth import HTTPBasicAuth
import json

def perform_api_maps_search(keyword, location_name):
 # Set up your API credentials
 api_login =
 api_password =

 # Define the API endpoint for the advanced live Google Maps search
 api_url =
"https://api.dataforseo.com/v3/serp/google/maps/live/advanced"

 # Set up the payload for the request with the depth parameter
 payload = [
 {
 "language_code": "en",
 "location_name": location_name,
 "keyword": keyword,
 "depth": 6 # Limit the number of results to the top 6
 }
]

 # Send a POST request to the API
 response = requests.post(
 api_url,
 headers={"Content-Type": "application/json"},
 auth=HTTPBasicAuth(api_login, api_password),
 json=payload
)

 # Check if the request was successful
 if response.status_code == 200:
 return response.json()
 else:
 raise Exception(f"Error: {response.status_code} - {response.text}")

def extract_business_names(api_response):
 # Extract business names from the API response
 business_names = []
 try:
 tasks = api_response.get("tasks", [])
 for task in tasks:
 result = task.get("result", [])

84/192

 for res in result:
 items = res.get("items", [])
 for item in items:
 business_names.append(item.get("title"))
 except Exception as e:
 raise Exception(f"Error extracting business names: {str(e)}")

 return business_names

Step 2: Update main.py to Use the Renamed Module and Functions

Update your main.py script to import and use the renamed module and functions:

85/192

python

import functions_framework
from google.cloud import bigquery
import json
import seo_api # Import the seo_api module

@functions_framework.http
def script_init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 # Instantiate a BigQuery client
 client = bigquery.Client(project="agency-seo-tools-318618")

 # Define the query to join Customers and CustomerQueries
 query = """
 SELECT
 c.CustomerName,
 q.Query,
 c.SearchLocation
 FROM
 `agency-seo-tools-318618.CustomerGbpCompetitors.Customers` c
 JOIN
 `agency-seo-tools-
318618.CustomerGbpCompetitors.CustomerQueries` q
 ON
 c.CustomerID = q.CustomerID
 ORDER BY
 c.CustomerName, q.Query;
 """

 try:
 # Perform the query
 query_job = client.query(query) # Make an API request
 results = query_job.result() # Waits for the job to complete

 # Create a dictionary to hold customers and their queries
 customer_queries = {}
 for row in results:
 customer_name = row.get("CustomerName")
 query_text = row.get("Query")

86/192

 search_location = row.get("SearchLocation")

 if customer_name not in customer_queries:
 customer_queries[customer_name] = []

 customer_queries[customer_name].append({
 "query": query_text,
 "location": search_location
 })

 # Perform a sample API request for " "
 api_response = seo_api.perform_api_maps_search("

", "Toronto,Ontario,Canada")
 business_names = seo_api.extract_business_names(api_response)

 # Add the business names to the output for demonstration purposes
 output = {
 "customer_queries": customer_queries,
 "business_names": business_names
 }

 # Return the results as JSON
 return json.dumps(output, indent=2), 200, {'Content-Type':
'application/json'}

 except Exception as e:
 return f"An error occurred: {str(e)}", 500

Key Changes

Module Name: Changed dfseo_api.py to seo_api.py.
Function Names: Updated function names to be more generic
(perform_api_maps_search).
Imports: Updated the import statement in main.py to reflect the new module
name.

Testing

1. Rename the File: Ensure you rename the file in your local or development
environment to seo_api.py.

2. Deploy: Deploy both main.py and seo_api.py as part of your Cloud Function
package.

3. Invoke the Function: Test the function via the HTTP URL and verify the JSON
output to ensure it correctly lists the business names.

ccast
Highlight

88/192

python

from google.cloud import bigquery

def get_customer_queries(project_id):
 """Fetches customer queries and search locations from BigQuery."""
 client = bigquery.Client(project=project_id)

 query = """
 SELECT
 c.CustomerName,
 q.Query,
 c.SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers` c
 JOIN
 `{}.CustomerGbpCompetitors.CustomerQueries` q
 ON
 c.CustomerID = q.CustomerID
 ORDER BY
 c.CustomerName, q.Query;
 """.format(project_id, project_id)

 query_job = client.query(query) # Make an API request
 results = query_job.result() # Waits for the job to complete

 # Create a dictionary to hold customers and their queries
 customer_queries = {}
 for row in results:
 customer_name = row.get("CustomerName")
 query_text = row.get("Query")
 search_location = row.get("SearchLocation")

 if customer_name not in customer_queries:
 customer_queries[customer_name] = []

 customer_queries[customer_name].append({
 "query": query_text,
 "location": search_location
 })

 return customer_queries

89/192

Step 2: Update main.py

Update main.py to import and use the BigQuery functions from big_query.py:

90/192

python

import functions_framework
import json
import seo api # Import the seo api module
import big query # Import the big query module

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"

 # Fetch customer queries from BigQuery
 customer_queries = big_query.get_customer_queries(project_id)

 # Perform a sample API request for " "
 api response seo api.perform api maps search("

", "Toronto,Ontario,Canada")
 business names seo api.extract business names(api response)

 # Add the business names to the output for demonstration purposes
 output {
 "customer queries": customer queries,
 "business names": business names
 }

 # Return the results as JSON
 return json.dumps(output, indent=2), 200, {'Content-Type':
'application/json'}

 except Exception as e:
 return f"An error occurred: {str(e)}", 500

Explanation

ccast
Highlight

92/192

python

from google.cloud import bigquery

def get first customer with queries(project id):
 """Fetches the first customer and their queries from BigQuery."""
 client bigquery.Client(project project id)

 # Fetch the first customer with their search location
 customer query """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`
 LIMIT 1;
 """.format(project_id)

 customer_query_job = client.query(customer_query)
 customer = next(customer_query_job.result(), None) # Get the first
customer

 if not customer:
 raise Exception("No customers found in the database.")

 customer id customer.get("CustomerID")
 customer name customer.get("CustomerName")
 search location customer.get("SearchLocation")

 # Fetch all queries for the customer
 queries query """
 SELECT Query
 FROM `{}.CustomerGbpCompetitors.CustomerQueries`
 WHERE CustomerID {};
 """.format(project_id, customer_id)

 queries_job = client.query(queries_query)
 queries = [row.get("Query") for row in queries_job.result()]

 return customer_name, search_location, queries

Step 2: Update main.py

93/192

Now, let's update main.py to loop through the queries, call the API, and collect unique
competitor names:

94/192

python

import functions_framework
import json
import seo api # Import the seo api module
import big query # Import the big query module

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"

 # Fetch the first customer and their queries
 customer_name, search_location, queries =
big_query.get_first_customer_with_queries(project_id)

 # Create a set to hold unique competitor names
 competitor names set()

 # Loop through all queries for the customer
 for query in queries:
 # Perform an API request for each query
 api response seo api.perform api maps search(query,
search location)
 business names seo api.extract business names(api response)

 # Find top 6 competitors (exclude customer name)
 for name in business_names[:6]:
 if name != customer_name:
 competitor_names.add(name)

 # Prepare the output with the customer name and unique competitors
 output = {
 "customer_name": customer_name,
 "unique_competitors": list(competitor_names)
 }

 # Return the results as JSON

ccast
Highlight

96/192

sql

UPDATE `agency-seo-tools-318618.CustomerGbpCompetitors.Customers`
SET CustomerName ' '
WHERE CustomerName ' ';

Explanation

UPDATE Statement: Modifies the CustomerName field for records where the
current CustomerName is ' '.
SET Clause: Assigns the new name '

' to the matching record.

Executing the SQL

1. BigQuery Console:

Open the BigQuery Console.
In the query editor, paste the SQL statement above.
Click "Run" to execute the query and update the record.

2. Python Script (Optional):

If you prefer, you can also execute this SQL query programmatically using a
Python script with the BigQuery client library.

Here's a sample Python script to execute the update query programmatically:

97/192

python

from google.cloud import bigquery

def update customer name(project id):
 """Update the customer name for in BigQuery."""
 client bigquery.Client(project project id)

 # Define the update query
 update query """
 UPDATE `{}.CustomerGbpCompetitors.Customers`
 SET CustomerName ' '
 WHERE CustomerName ' ';
 """.format(project id)

 # Execute the update query
 query_job = client.query(update_query) # Make an API request
 query_job.result() # Wait for the query to complete

 print("Customer name updated successfully.")

Example usage
update_customer_name("agency-seo-tools-318618")

Testing

After executing the update, you can verify the change by running a SELECT query
to fetch the customer names and ensure the update was successful.
Make sure there are no typos or inconsistencies in the customer name when
performing the update.

This approach will ensure that the customer name is updated correctly in your BigQuery
table. Let me know if you have any further questions or need additional assistance!

Great, now let's expand on the project code. We'll need a function in the
big_query.py file that adds a competitor to the database, if the competitor
doesn't already exist. The CompetitorID should use the 'place_id' value
that is returned from the API for that business. When determining if a

ccast
Highlight

ccast
Highlight

ccast
Highlight

99/192

python

from google.cloud import bigquery

def get bigquery client(project id):
 """Returns a BigQuery client for the specified project."""
 return bigquery.Client(project project id)

def get first customer with queries(project id):
 """Fetches the first customer and their queries from BigQuery."""
 client get bigquery client(project id)

 # Fetch the first customer with their search location
 customer query """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`
 LIMIT 1;
 """.format(project_id)

 customer_query_job = client.query(customer_query)
 customer next(customer query job.result(), None) # Get the first
customer

 if not customer:
 raise Exception("No customers found in the database.")

 customer id customer.get("CustomerID")
 customer name customer.get("CustomerName")
 search location customer.get("SearchLocation")

 # Fetch all queries for the customer
 queries_query = """
 SELECT Query
 FROM `{}.CustomerGbpCompetitors.CustomerQueries`
 WHERE CustomerID = {};
 """.format(project_id, customer_id)

 queries_job = client.query(queries_query)
 queries = [row.get("Query") for row in queries_job.result()]

 return customer_name, search_location, queries

100/192

def add_competitor_if_not_exists(project_id, competitor_name, place_id,
review_count=None, average_rating=None):
 """Adds a competitor to the database if it does not already exist."""
 client = get_bigquery_client(project_id)

 # Check if the competitor already exists using place_id
 check query """
 SELECT CompetitorID
 FROM `{}.CustomerGbpCompetitors.Competitors`
 WHERE CompetitorID '{}';
 """.format(project id, place id)

 check job client.query(check query)
 competitor next(check job.result(), None)

 if competitor:
 print(f"Competitor '{competitor name}' already exists with
CompetitorID '{place_id}'.")
 return

 # Insert the new competitor into the database
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.Competitors` (CompetitorID,
CompetitorName, ReviewCount, AverageRating)
 VALUES ('{}', '{}', {}, {});
 """.format(
 project_id,
 place id,
 competitor name.replace("'", "''"), # Escape single quotes in
names
 review count if review count is not None else 'NULL',
 average rating if average rating is not None else 'NULL'
)

 insert job client.query(insert query)
 insert job.result() # Wait for the query to complete

 print(f"Competitor '{competitor name}' added with CompetitorID
'{place_id}'.")

Explanation

get_bigquery_client: A helper function to create a BigQuery client, making it
easier to use in other functions.

102/192

python

import functions_framework
import json
import seo api # Import the seo api module
import big query # Import the big query module

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"

 # Fetch the first customer and their queries
 customer_name, search_location, queries =
big_query.get_first_customer_with_queries(project_id)

 # Create a set to hold unique competitor names
 competitor names set()

 # Loop through all queries for the customer
 for query in queries:
 # Perform an API request for each query
 api response seo api.perform api maps search(query,
search location)
 items api response.get("tasks", [])[0].get("result", [])
[0].get("items", [])

 # Find top 6 competitors (exclude customer name)
 for item in items[:6]:
 business_name = item.get("title")
 place_id = item.get("place_id")
 review_count = item.get("rating", {}).get("votes_count")
 average_rating = item.get("rating", {}).get("value")

 if business_name != customer_name:
 competitor_names.add(business_name)
 # Add competitor to database if it doesn't already
exist

ccast
Highlight

ccast
Highlight

105/192

python

from google.cloud import bigquery

def get bigquery client(project id):
 """Returns a BigQuery client for the specified project."""
 return bigquery.Client(project project id)

def get first customer with queries(project id):
 """Fetches the first customer and their queries from BigQuery."""
 client get bigquery client(project id)

 # Fetch the first customer with their search location
 customer query """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`
 LIMIT 1;
 """.format(project_id)

 customer_query_job = client.query(customer_query)
 customer next(customer query job.result(), None) # Get the first
customer

 if not customer:
 raise Exception("No customers found in the database.")

 customer id customer.get("CustomerID")
 customer name customer.get("CustomerName")
 search location customer.get("SearchLocation")

 # Fetch all queries for the customer
 queries_query = """
 SELECT Query
 FROM `{}.CustomerGbpCompetitors.CustomerQueries`
 WHERE CustomerID = {};
 """.format(project_id, customer_id)

 queries_job = client.query(queries_query)
 queries = [row.get("Query") for row in queries_job.result()]

 return customer_name, search_location, queries

106/192

def add_competitor_if_not_exists(project_id, competitor_name, place_id):
 """Adds a competitor to the database if it does not already exist."""
 client = get_bigquery_client(project_id)

 # Check if the competitor already exists using place_id
 check_query = """
 SELECT CompetitorID
 FROM `{}.CustomerGbpCompetitors.Competitors`
 WHERE CompetitorID {};
 """.format(project id, place id)

 check job client.query(check query)
 competitor next(check job.result(), None)

 if competitor:
 print(f"Competitor '{competitor name}' already exists with
CompetitorID '{place id}'.")
 return

 # Insert the new competitor into the database
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.Competitors` (CompetitorID,
CompetitorName)
 VALUES ({}, '{}');
 """.format(
 project_id,
 place_id,
 competitor name.replace("'", "''") # Escape single quotes in names
)

 insert job client.query(insert query)
 insert job.result() # Wait for the query to complete

 print(f"Competitor '{competitor name}' added with CompetitorID
'{place id}'.")

Updated main.py

Ensure main.py is updated to handle the logic for fetching and processing competitors:

107/192

python

import functions_framework
import json
import seo api # Import the seo api module
import big query # Import the big query module

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"

 # Fetch the first customer and their queries
 customer_name, search_location, queries =
big_query.get_first_customer_with_queries(project_id)

 # Create a set to hold unique competitor names
 competitor names set()

 # Loop through all queries for the customer
 for query in queries:
 # Perform an API request for each query
 api response seo api.perform api maps search(query,
search location)
 items api response.get("tasks", [])[0].get("result", [])
[0].get("items", [])

 # Find top 6 competitors (exclude customer name)
 for item in items[:6]:
 business_name = item.get("title")
 place_id = item.get("place_id")

 if business_name != customer_name:
 competitor_names.add(business_name)
 # Add competitor to database if it doesn't already
exist
 big_query.add_competitor_if_not_exists(
 project_id,

ccast
Highlight

ccast
Highlight

110/192

python

from google.cloud import bigquery

def get bigquery client(project id):
 """Returns a BigQuery client for the specified project."""
 return bigquery.Client(project project id)

def get first customer with queries(project id):
 """Fetches the first customer and their queries from BigQuery."""
 client get bigquery client(project id)

 # Fetch the first customer with their search location
 customer query """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`
 LIMIT 1;
 """.format(project_id)

 customer_query_job = client.query(customer_query)
 customer next(customer query job.result(), None) # Get the first
customer

 if not customer:
 raise Exception("No customers found in the database.")

 customer id customer.get("CustomerID")
 customer name customer.get("CustomerName")
 search location customer.get("SearchLocation")

 # Fetch all queries for the customer
 queries_query = """
 SELECT Query
 FROM `{}.CustomerGbpCompetitors.CustomerQueries`
 WHERE CustomerID = {};
 """.format(project_id, customer_id)

 queries_job = client.query(queries_query)
 queries = [row.get("Query") for row in queries_job.result()]

 return customer_name, search_location, queries

ccast
Highlight

113/192

python

import functions_framework
import json
import seo api # Import the seo api module
import big query # Import the big query module
import logging

Configure logging
logging.basicConfig(level logging.INFO)

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"
 logging.info(f"Starting process for project ID: {project_id}")

 # Fetch the first customer and their queries
 customer name, search location, queries
big query.get first customer with queries(project id)
 logging.info(f"Processing customer: {customer name} with search
location: {search location}")
 logging.info(f"Queries to process: {queries}")

 # Create a set to hold unique competitor names
 competitor names set()

 # Loop through all queries for the customer
 for query in queries:
 logging.info(f"Performing API search for query: {query}")

 # Perform an API request for each query
 api_response = seo_api.perform_api_maps_search(query,
search_location)
 items = api_response.get("tasks", [])[0].get("result", [])
[0].get("items", [])

 # Find top 6 competitors (exclude customer name)

114/192

 for item in items[:6]:
 business_name = item.get("title")
 place_id = item.get("place_id")

 if business_name != customer_name:
 logging.info(f"Found competitor: {business_name} with
place id: {place id}")
 competitor names.add(business name)

 # Add competitor to database if it doesn't already
exist
 big query.add competitor if not exists(
 project id,
 business name,
 int(place id)
)

 # Prepare the output with the customer name and unique competitors
 output = {
 "customer_name": customer_name,
 "unique_competitors": list(competitor_names)
 }

 logging.info(f"Process completed for customer: {customer_name}")
 logging.info(f"Unique competitors found:
{output['unique_competitors']}")

 # Return the results as JSON
 return json.dumps(output, indent 2), 200, {'Content Type':
'application/json'}

 except Exception as e:
 logging.error(f"An error occurred: {str(e)}")
 return f"An error occurred: {str(e)}", 500

Updated big query.py

We'll also add logging to the big query.py to track database interactions:

115/192

python

from google.cloud import bigquery
import logging

def get bigquery client(project id):
 """Returns a BigQuery client for the specified project."""
 return bigquery.Client(project project id)

def get first customer with queries(project id):
 """Fetches the first customer and their queries from BigQuery."""
 client get bigquery client(project id)
 logging.info("Fetching first customer and queries from BigQuery")

 # Fetch the first customer with their search location
 customer_query = """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`
 LIMIT 1;
 """.format(project_id)

 customer query job client.query(customer query)
 customer next(customer query job.result(), None) # Get the first
customer

 if not customer:
 raise Exception("No customers found in the database.")

 customer id customer.get("CustomerID")
 customer name customer.get("CustomerName")
 search location customer.get("SearchLocation")

 logging.info(f"Found customer: {customer_name} with ID: {customer_id}")

 # Fetch all queries for the customer
 queries_query = """
 SELECT Query
 FROM `{}.CustomerGbpCompetitors.CustomerQueries`
 WHERE CustomerID = {};
 """.format(project_id, customer_id)

 queries_job = client.query(queries_query)

116/192

 queries = [row.get("Query") for row in queries_job.result()]

 logging.info(f"Queries found for customer {customer_name}: {queries}")

 return customer_name, search_location, queries

def add competitor if not exists(project id, competitor name, place id):
 """Adds a competitor to the database if it does not already exist."""
 client get bigquery client(project id)

 # Check if the competitor already exists using place id
 check query """
 SELECT CompetitorID
 FROM `{}.CustomerGbpCompetitors.Competitors`
 WHERE CompetitorID {};
 """.format(project id, place id)

 check_job = client.query(check_query)
 competitor = next(check_job.result(), None)

 if competitor:
 logging.info(f"Competitor '{competitor_name}' already exists with
CompetitorID '{place_id}'.")
 return

 # Insert the new competitor into the database
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.Competitors` (CompetitorID,
CompetitorName)
 VALUES ({}, '{}');
 """.format(
 project id,
 place id,
 competitor name.replace("'", "''") # Escape single quotes in names
)

 insert job client.query(insert query)
 insert job.result() # Wait for the query to complete

 logging.info(f"Competitor '{competitor_name}' added with CompetitorID
'{place_id}'.")

Key Additions

Logging Setup: Configured logging at the INFO level to capture detailed
execution information.
Informational Logs: Added logging statements at various points in the code to
trace the flow of execution, data processing, and error handling.

ccast
Highlight

119/192

python

from google.cloud import bigquery
import logging

def get bigquery client(project id):
 """Returns a BigQuery client for the specified project."""
 return bigquery.Client(project project id)

def get first customer with queries(project id):
 """Fetches the first customer and their queries from BigQuery."""
 client get bigquery client(project id)
 logging.info("Fetching first customer and queries from BigQuery")

 # Fetch the first customer with their search location
 customer_query = """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`
 LIMIT 1;
 """.format(project_id)

 customer query job client.query(customer query)
 customer next(customer query job.result(), None) # Get the first
customer

 if not customer:
 raise Exception("No customers found in the database.")

 customer id customer.get("CustomerID")
 customer name customer.get("CustomerName")
 search location customer.get("SearchLocation")

 logging.info(f"Found customer: {customer_name} with ID: {customer_id}")

 # Fetch all queries for the customer
 queries_query = """
 SELECT Query
 FROM `{}.CustomerGbpCompetitors.CustomerQueries`
 WHERE CustomerID = {};
 """.format(project_id, customer_id)

 queries_job = client.query(queries_query)

120/192

 queries = [row.get("Query") for row in queries_job.result()]

 logging.info(f"Queries found for customer {customer_name}: {queries}")

 return customer_name, search_location, queries

def add competitor if not exists(project id, competitor name, place id):
 """Adds a competitor to the database if it does not already exist."""
 client get bigquery client(project id)

 # Check if the competitor already exists using place id
 check query """
 SELECT CompetitorID
 FROM `{}.CustomerGbpCompetitors.Competitors`
 WHERE CompetitorID '{}';
 """.format(project id, place id)

 check_job = client.query(check_query)
 competitor = next(check_job.result(), None)

 if competitor:
 logging.info(f"Competitor '{competitor_name}' already exists with
CompetitorID '{place_id}'.")
 return

 # Insert the new competitor into the database
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.Competitors` (CompetitorID,
CompetitorName)
 VALUES ('{}', '{}');
 """.format(
 project id,
 place id,
 competitor name.replace("'", "''") # Escape single quotes in names
)

 insert job client.query(insert query)
 insert job.result() # Wait for the query to complete

 logging.info(f"Competitor '{competitor_name}' added with CompetitorID
'{place_id}'.")

Step 3: Re-test the Function

1. Deploy and Test: Re-deploy your Cloud Function with the updated files.
2. Invoke the Function: Test by sending a request to the Cloud Function URL.
3. Check BigQuery: Verify that competitors are correctly added with the place id as

CompetitorID.

ccast
Highlight

124/192

python

from google.cloud import bigquery
import logging

def get bigquery client(project id):
 """Returns a BigQuery client for the specified project."""
 return bigquery.Client(project project id)

def get first customer with queries(project id):
 """Fetches the first customer and their queries from BigQuery."""
 client get bigquery client(project id)
 logging.info("Fetching first customer and queries from BigQuery")

 # Fetch the first customer with their search location
 customer_query = """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`
 LIMIT 1;
 """.format(project_id)

 customer query job client.query(customer query)
 customer next(customer query job.result(), None) # Get the first
customer

 if not customer:
 raise Exception("No customers found in the database.")

 customer id customer.get("CustomerID")
 customer name customer.get("CustomerName")
 search location customer.get("SearchLocation")

 logging.info(f"Found customer: {customer_name} with ID: {customer_id}")

 # Fetch all queries for the customer
 queries_query = """
 SELECT Query
 FROM `{}.CustomerGbpCompetitors.CustomerQueries`
 WHERE CustomerID = {};
 """.format(project_id, customer_id)

 queries_job = client.query(queries_query)

125/192

 queries = [row.get("Query") for row in queries_job.result()]

 logging.info(f"Queries found for customer {customer_name}: {queries}")

 return customer_name, search_location, queries

def add competitor if not exists(project id, competitor name, place id):
 """Adds a competitor to the database if it does not already exist."""
 client get bigquery client(project id)

 # Check if the competitor already exists using place id
 check query """
 SELECT CompetitorID
 FROM `{}.CustomerGbpCompetitors.Competitors`
 WHERE CompetitorID '{}';
 """.format(project id, place id)

 check_job = client.query(check_query)
 competitor = next(check_job.result(), None)

 if competitor:
 logging.info(f"Competitor '{competitor_name}' already exists with
CompetitorID '{place_id}'.")
 return

 # Insert the new competitor into the database
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.Competitors` (CompetitorID,
CompetitorName)
 VALUES ('{}', '{}');
 """.format(
 project id,
 place id,
 competitor name.replace("'", "''") # Escape single quotes in names
)

 insert job client.query(insert query)
 insert job.result() # Wait for the query to complete

 logging.info(f"Competitor '{competitor_name}' added with CompetitorID
'{place_id}'.")

Re-Test the Function

1. Deploy Updated Code: Deploy the updated code to your Cloud Function
environment.

2. Test the Function: Send a request to the Cloud Function URL and verify the
output.

126/192

3. Check BigQuery: Confirm that competitors are correctly added with the place_id
as CompetitorID.

4. Monitor Logs: Review logs to ensure the function is operating correctly.

This process should resolve the schema compatibility issue and allow your code to work
with CompetitorID as a string. Let me know if you encounter any further issues!

Okay, since we don't have any data in this table, I'll just re-create this table.
I think it would be best if we also re-create the table for Customers so that
the CustomerID uses the place_id for the business as well. I'll make these
changes. Can you write the SQL to repopulate the Customers table data
as well as the CustomerQueries table data? Here are the customer names
again along with their place_id values: KCS Kitchener Cleaning Services:
ChIJHeqhRy1x6lIRyGmjJ4p8PGQ

Certainly! Since you are re-creating the tables, let's write the SQL queries to repopulate
the Customers and CustomerQueries tables using the place id as CustomerID.

SQL to Repopulate the Customers Table

Here’s the SQL to insert the data into the Customers table:

ccast
Highlight

127/192

sql

INSERT INTO `agency-seo-tools-318618.CustomerGbpCompetitors.Customers`
(CustomerID, CustomerName, SearchLocation)
VALUES
 ('ChIJHeqhRy1x6lIRyGmjJ4p8PGQ', 'KCS Kitchener Cleaning Services',
'Kitchener,Ontario,Canada'),
 (' ', 'P

', 'Toronto,Ontario,Canada'),
 (' ', '

', 'Winnipeg,Manitoba,Canada'),
 (' ', '

', 'Toronto,Ontario,Canada');

SQL to Repopulate the CustomerQueries Table

Here's the SQL to insert the query data into the CustomerQueries table:

128/192

sql

INSERT INTO `agency-seo-tools-
318618.CustomerGbpCompetitors.CustomerQueries` (QueryID, Query, CustomerID)
VALUES
 (1,

 (9, 'commercial cleaning', 'ChIJHeqhRy1x6lIRyGmjJ4p8PGQ'),
 (10, 'commercial cleaning cambridge', 'ChIJHeqhRy1x6lIRyGmjJ4p8PGQ'),
 (11, 'commercial cleaning company', 'ChIJHeqhRy1x6lIRyGmjJ4p8PGQ'),
 (12, 'house cleaners cambridge', 'ChIJHeqhRy1x6lIRyGmjJ4p8PGQ'),
 (13, 'house cleaning cambridge', 'ChIJHeqhRy1x6lIRyGmjJ4p8PGQ'),

 (14, '

 ');

Execution Steps

1. Re-create the Tables: Make sure the tables are re-created with the correct
schema, using STRING for CustomerID in the Customers table.

2. Execute SQL Queries: Run the SQL queries in the BigQuery console to insert the
data into the respective tables.

3. Verify the Data: Check the tables to ensure the data is correctly inserted and that
place_id values are used as CustomerID.

Considerations

Unique Identifiers: Ensure that place id values are unique for each business
when setting them as the CustomerID.

129/192

Testing: After populating the tables, you can test your Cloud Function to verify that
it handles the new schema correctly and performs the expected operations.

This setup will ensure that your customer and query data is correctly linked to their
unique identifiers in the Google Places API. Let me know if you need further assistance
or additional queries!

Okay great. The database tables are updated to now use a String for
CustomerID and CompetitorID in Customers and Competitors tables
respectively. And the BusinessData table is now using a String for
BusinessID. After the table updates, I ran the project code and the code
generated the following error: [7:02:34 PM] - INFO:root:Starting process
for project ID: agency-seo-tools-318618 [7:02:34 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:02:34 PM] -
INFO:root:Fetching first customer and queries from BigQuery [7:02:35 PM]
- INFO:root:Found customer:

 ID: [7:02:36 PM] - ERROR:root:An
error occurred: 400 Unrecognized name: ChIJcZVw at [4:28] Location: US
Job ID: be041096-3a8e-4de1-8b8b-999244362b4b

The error message indicates a problem with the SQL query execution related to how
CustomerID is being referenced in the SQL statements. The issue is likely due to the
way string identifiers are being concatenated into the query, which can lead to SQL
injection or malformed queries if not handled properly. Let's address this issue by using
parameterized queries.

Updating big_query.py

We'll use parameterized queries to safely insert values into the SQL statements. This
approach helps avoid SQL injection issues and ensures that identifiers are correctly
interpreted as strings.

Updated Code

Here’s how you can modify the relevant functions in big_query.py:

ccast
Highlight

ccast
Highlight

ccast
Highlight

130/192

python

from google.cloud import bigquery
import logging

def get bigquery client(project id):
 """Returns a BigQuery client for the specified project."""
 return bigquery.Client(project project id)

def get first customer with queries(project id):
 """Fetches the first customer and their queries from BigQuery."""
 client get bigquery client(project id)
 logging.info("Fetching first customer and queries from BigQuery")

 # Fetch the first customer with their search location
 customer_query = """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`
 LIMIT 1;
 """.format(project_id)

 customer query job client.query(customer query)
 customer next(customer query job.result(), None) # Get the first
customer

 if not customer:
 raise Exception("No customers found in the database.")

 customer id customer.get("CustomerID")
 customer name customer.get("CustomerName")
 search location customer.get("SearchLocation")

 logging.info(f"Found customer: {customer_name} with ID: {customer_id}")

 # Fetch all queries for the customer using parameterized query
 queries_query = """
 SELECT Query
 FROM `{}.CustomerGbpCompetitors.CustomerQueries`
 WHERE CustomerID = @customer_id;
 """.format(project_id)

 job_config = bigquery.QueryJobConfig(

131/192

 query_parameters=[
 bigquery.ScalarQueryParameter("customer_id", "STRING",
customer_id),
]
)

 queries job client.query(queries query, job config job config)
 queries [row.get("Query") for row in queries job.result()]

 logging.info(f"Queries found for customer {customer name}: {queries}")

 return customer name, search location, queries

def add competitor if not exists(project id, competitor name, place id):
 """Adds a competitor to the database if it does not already exist."""
 client get bigquery client(project id)

 # Check if the competitor already exists using place_id with
parameterized query
 check_query = """
 SELECT CompetitorID
 FROM `{}.CustomerGbpCompetitors.Competitors`
 WHERE CompetitorID = @place_id;
 """.format(project_id)

 check_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("place id", "STRING", place id),
]
)

 check job client.query(check query, job config check job config)
 competitor next(check job.result(), None)

 if competitor:
 logging.info(f"Competitor '{competitor name}' already exists with
CompetitorID '{place id}'.")
 return

 # Insert the new competitor into the database using parameterized query
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.Competitors` (CompetitorID,
CompetitorName)
 VALUES (@place_id, @competitor_name);
 """.format(project_id)

 insert_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("place_id", "STRING", place_id),
 bigquery.ScalarQueryParameter("competitor name", "STRING",
competitor name),
]

ccast
Highlight

133/192

 with search location: Toronto,Ontario,Canada
INFO:root:Queries to process: ['

'] INFO:root:Performing API search
for query: [7:08:45 PM] - INFO:root:Found competitor:
Prudent Paws with place_id: ChIJR-KpFlnL1IkRa6rAXnc4ES4
ERROR:root:An error occurred: invalid literal for int() with base 10: 'ChIJR-
KpFlnL1IkRa6rAXnc4ES4'

The error message indicates that there is an attempt to convert a place id to an
integer, which is incorrect since place id values are strings. Let's make sure that all
references to place_id in the code are handled as strings and remove any unnecessary
type conversions.

Update main.py

Ensure that all place id handling is correctly treated as strings without conversion to
integers:

ccast
Highlight

ccast
Highlight

134/192

python

import functions_framework
import json
import seo api # Import the seo api module
import big query # Import the big query module
import logging

Configure logging
logging.basicConfig(level logging.INFO)

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"
 logging.info(f"Starting process for project ID: {project_id}")

 # Fetch the first customer and their queries
 customer name, search location, queries
big query.get first customer with queries(project id)
 logging.info(f"Processing customer: {customer name} with search
location: {search location}")
 logging.info(f"Queries to process: {queries}")

 # Create a set to hold unique competitor names
 competitor names set()

 # Loop through all queries for the customer
 for query in queries:
 logging.info(f"Performing API search for query: {query}")

 # Perform an API request for each query
 api_response = seo_api.perform_api_maps_search(query,
search_location)
 items = api_response.get("tasks", [])[0].get("result", [])
[0].get("items", [])

 # Find top 6 competitors (exclude customer name)

136/192

2. Test the Function: Send a request to the Cloud Function URL and verify the
output.

3. Check BigQuery: Ensure competitors are correctly added with place id as
CompetitorID.

4. Monitor Logs: Review logs to confirm the function executes without errors.

This update should resolve the error related to place_id handling. If there are further
issues, feel free to ask for more help!

After the code changes you suggested, the code executed successfully. I
will paste the verbose output from the last code execution. There are two
things I'm concerned about the warning that "No project ID could be
determined". [7:12:05 PM] - INFO:root:Starting process for project ID:
agency-seo-tools-318618 [7:12:05 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:12:05 PM] -
INFO:root:Fetching first customer and queries from BigQuery [7:12:06 PM]
- INFO:root:Found customer:

[7:12:07 PM] -
INFO:root:Queries found for customer

: ['
'] INFO:root:Processing customer:

 with search location: Toronto,Ontario,Canada
INFO:root:Queries to process: ['d

'] INFO:root:Performing API search
for query: [7:12:11 PM] - INFO:root:Found competitor:
Prudent Paws with place_id: ChIJR-KpFlnL1IkRa6rAXnc4ES4 [7:12:11
PM] - WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:12:14 PM] -
INFO:root:Competitor 'Prudent Paws' added with CompetitorID 'ChIJR-
KpFlnL1IkRa6rAXnc4ES4'. INFO:root:Found competitor: Atlas Paws Club
with place_id: ChIJcffzWUExUK0RLBq4IiSiMGs [7:12:14 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:12:17 PM] -
INFO:root:Competitor 'Atlas Paws Club' added with CompetitorID
'ChIJcffzWUExUK0RLBq4IiSiMGs'. INFO:root:Found competitor: Park9
Downtown- Dog Playcare. Spa. Resort with place_id:
ChIJeynt9jzL1IkRozMJHp8pTzY [7:12:17 PM] -
WARNING:google.auth._default:No project ID could be determined.

ccast
Highlight

ccast
Highlight

ccast
Highlight

ccast
Highlight

ccast
Highlight

ccast
Highlight

137/192

Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:12:20 PM] -
INFO:root:Competitor 'Park9 Downtown- Dog Playcare. Spa. Resort'
added with CompetitorID 'ChIJeynt9jzL1IkRozMJHp8pTzY'.
INFO:root:Found competitor: SuperDoggos Toronto with place_id:
ChIJ2YZVXZQ1K4gRobWTA0Dp6Ss [7:12:20 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:12:23 PM] -
INFO:root:Competitor 'SuperDoggos Toronto' added with CompetitorID
'ChIJ2YZVXZQ1K4gRobWTA0Dp6Ss'. INFO:root:Found competitor: Dog
World Resort & Spa with place_id: ChIJOz8XReY1K4gR_tRJmf3LYrU
[7:12:23 PM] - WARNING:google.auth._default:No project ID could be
determined. Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:12:26 PM] -
INFO:root:Competitor 'Dog World Resort & Spa' added with CompetitorID
'ChIJOz8XReY1K4gR_tRJmf3LYrU'. INFO:root:Found competitor: Fluffy
Paws Pet Care with place_id: ChIJZ0xDkJE1K4gR2M96fxyNM0s [7:12:26
PM] - WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:12:29 PM] -
INFO:root:Competitor 'Fluffy Paws Pet Care' added with CompetitorID
'ChIJZ0xDkJE1K4gR2M96fxyNM0s'. INFO:root:Performing API search for
query: dog boarding toronto [7:12:32 PM] - INFO:root:Found competitor:
Prudent Paws with place_id: ChIJR-KpFlnL1IkRa6rAXnc4ES4 [7:12:32
PM] - WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:12:33 PM] -
INFO:root:Competitor 'Prudent Paws' already exists with CompetitorID
'ChIJR-KpFlnL1IkRa6rAXnc4ES4'. INFO:root:Found competitor: Atlas
Paws Club with place_id: ChIJcffzWUExUK0RLBq4IiSiMGs [7:12:33 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:12:34 PM] -
INFO:root:Competitor 'Atlas Paws Club' already exists with CompetitorID
'ChIJcffzWUExUK0RLBq4IiSiMGs'. INFO:root:Found competitor: Fluffy
Paws Pet Care with place_id: ChIJZ0xDkJE1K4gR2M96fxyNM0s [7:12:34
PM] - WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:12:35 PM] -
INFO:root:Competitor 'Fluffy Paws Pet Care' already exists with
CompetitorID 'ChIJZ0xDkJE1K4gR2M96fxyNM0s'. INFO:root:Found

ccast
Highlight

ccast
Highlight

140/192

python

import functions_framework
import json
import seo_api # Import the seo_api module
import big_query # Import the big_query module
import logging

Configure logging
logging.basicConfig(level=logging.INFO)

@functions_framework.http
def script_init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"
 logging.info(f"Starting process for project ID: {project_id}")

 # Fetch the first customer and their queries
 customer_name, search_location, queries =
big_query.get_first_customer_with_queries(project_id)
 logging.info(f"Processing customer: {customer_name} with search
location: {search_location}")
 logging.info(f"Queries to process: {queries}")

 # Create a set to hold unique competitor names
 competitor_names = set()

 # Loop through all queries for the customer
 for query in queries:
 logging.info(f"Performing API search for query: {query}")

 # Perform an API request for each query
 api_response = seo_api.perform_api_maps_search(query,
search_location)
 items = api_response.get("tasks", [])[0].get("result", [])
[0].get("items", [])

 # Find top 6 competitors (exclude customer name)

141/192

 for item in items[:6]:
 business_name = item.get("title")
 place_id = item.get("place_id")

 # Ensure place_id is not None
 if business_name != customer_name and place_id is not None:
 logging.info(f"Found competitor: {business_name} with
place_id: {place_id}")
 competitor_names.add(business_name)

 # Add competitor to database if it doesn't already
exist
 big_query.add_competitor_if_not_exists(
 project_id,
 business_name,
 place_id # Pass place_id as a string
)

 # Prepare the output with the customer name and unique competitors
 output = {
 "customer_name": customer_name,
 "unique_competitors": list(competitor_names)
 }

 logging.info(f"Process completed for customer: {customer_name}")
 logging.info(f"Unique competitors found:
{output['unique_competitors']}")

 # Return the results as JSON
 return json.dumps(output, indent=2), 200, {'Content-Type':
'application/json'}

 except Exception as e:
 logging.error(f"An error occurred: {str(e)}")
 return f"An error occurred: {str(e)}", 500

Testing

1. Set Environment Variable: Ensure that your environment has the
GOOGLE_CLOUD_PROJECT variable set.

2. Deploy Updated Code: Deploy the updated main.py file.
3. Test the Function: Send a request to the Cloud Function URL and verify the

output.
4. Check BigQuery: Ensure competitors are correctly added with valid place_id.
5. Monitor Logs: Review logs to confirm the function executes without warnings and

errors.

143/192

python

import functions_framework
import json
import seo_api # Import the seo_api module
import big_query # Import the big_query module
import logging

Configure logging
logging.basicConfig(level=logging.INFO)

@functions_framework.http
def script_init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"
 logging.info(f"Starting process for project ID: {project_id}")

 # Fetch the first customer and their queries
 customer_name, search_location, queries =
big_query.get_first_customer_with_queries(project_id)
 logging.info(f"Processing customer: {customer_name} with search
location: {search_location}")
 logging.info(f"Queries to process: {queries}")

 # Create a set to hold unique competitor names
 competitor_names = set()

 # Loop through all queries for the customer
 for query in queries:
 logging.info(f"Performing API search for query: {query}")

 # Perform an API request for each query
 api_response = seo_api.perform_api_maps_search(query,
search_location)
 items = api_response.get("tasks", [])[0].get("result", [])
[0].get("items", [])

 # Find top 6 competitors (exclude customer name)

145/192

1. Deploy Updated Code: Ensure the updated main.py file is deployed.
2. Test the Function: Send a request to the Cloud Function URL and verify the logs.
3. Check Logs: Review the logs to confirm that entries are made for competitors with

missing place_id.

This update will help you track instances where the place_id is missing, providing more
insight into the data processing flow. If you have further questions or need additional
assistance, feel free to ask!

The place_id updates look like they work well. The environment variable
issue is still unresolved. What I tried was to edit the Cloud Functions
project, in the configuration screen there is a section titled "Runtime, build,
connections and security settings". I expanded that section and in the
Runtime settings I found a 'Runtime environment variables' section where I
can set runtime variables. I added the variable
"GOOGLE_CLOUD_PROJECT" and set that value to "agency-seo-tools-
318618". But this didn't resolve the error. I still see this line during
execution: [7:43:59 PM] - WARNING:google.auth._default:No project ID
could be determined. Consider running gcloud config set project or
setting the GOOGLE_CLOUD_PROJECT environment variable Here is
the verbose output from the last execution: [7:43:59 PM] -
INFO:root:Starting process for project ID: agency-seo-tools-318618
[7:43:59 PM] - WARNING:google.auth._default:No project ID could be
determined. Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable INFO:root:Fetching
first customer and queries from BigQuery [7:44:00 PM] - INFO:root:Found
customer:

 [7:44:01 PM] - INFO:root:Queries
found for customer : ['

']
INFO:root:Processing customer:

 with search location: Toronto,Ontario,Canada INFO:root:Queries
to process: [

'] INFO:root:Performing API search for query:
 [7:44:08 PM] - INFO:root:Found competitor: Fluffy Paws Pet Care

with place_id: ChIJZ0xDkJE1K4gR2M96fxyNM0s [7:44:08 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:44:09 PM] -
INFO:root:Competitor 'Fluffy Paws Pet Care' already exists with
CompetitorID 'ChIJZ0xDkJE1K4gR2M96fxyNM0s'. INFO:root:Found
competitor: Prudent Paws with place_id: ChIJR-KpFlnL1IkRa6rAXnc4ES4

ccast
Highlight

146/192

[7:44:09 PM] - WARNING:google.auth._default:No project ID could be
determined. Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:44:09 PM] -
INFO:root:Competitor 'Prudent Paws' already exists with CompetitorID
'ChIJR-KpFlnL1IkRa6rAXnc4ES4'. INFO:root:Found competitor: Atlas
Paws Club with place_id: ChIJcffzWUExUK0RLBq4IiSiMGs [7:44:09 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:44:10 PM] -
INFO:root:Competitor 'Atlas Paws Club' already exists with CompetitorID
'ChIJcffzWUExUK0RLBq4IiSiMGs'. INFO:root:Found competitor: Park9
Downtown- Dog Playcare. Spa. Resort with place_id:
ChIJeynt9jzL1IkRozMJHp8pTzY [7:44:10 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:44:11 PM] -
INFO:root:Competitor 'Park9 Downtown- Dog Playcare. Spa. Resort'
already exists with CompetitorID 'ChIJeynt9jzL1IkRozMJHp8pTzY'.
INFO:root:Found competitor: K9 Clubhouse with place_id: ChIJRyiJ-
5vL1IkRtTNMQq6kDoA [7:44:11 PM] - WARNING:google.auth._default:No
project ID could be determined. Consider running gcloud config set
project or setting the GOOGLE_CLOUD_PROJECT environment
variable [7:44:14 PM] - INFO:root:Competitor 'K9 Clubhouse' added with
CompetitorID 'ChIJRyiJ-5vL1IkRtTNMQq6kDoA'. INFO:root:Found
competitor: Paula Gilroy with place_id: ChIJeyCjCEzL1IkRAux7ffH4JYE
[7:44:14 PM] - WARNING:google.auth._default:No project ID could be
determined. Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:44:17 PM] -
INFO:root:Competitor 'Paula Gilroy' added with CompetitorID
'ChIJeyCjCEzL1IkRAux7ffH4JYE'. INFO:root:Performing API search for
query: dog boarding toronto [7:44:19 PM] - INFO:root:Found competitor:
Prudent Paws with place_id: ChIJR-KpFlnL1IkRa6rAXnc4ES4 [7:44:19
PM] - WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:44:20 PM] -
INFO:root:Competitor 'Prudent Paws' already exists with CompetitorID
'ChIJR-KpFlnL1IkRa6rAXnc4ES4'. INFO:root:Found competitor: Atlas
Paws Club with place_id: ChIJcffzWUExUK0RLBq4IiSiMGs [7:44:20 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [7:44:21 PM] -
INFO:root:Competitor 'Atlas Paws Club' already exists with CompetitorID

ccast
Highlight

~

'ChlJcffzWUExUK0RLBq4IiSiMGs'. INFO:root:Found competitor: Fluffy

Paws Pet Care with place_id: ChlJZ0xDkJE1 K4gR2M96fxyNM0s [7:44:21

PM] - WARNING:google.auth._default:No project ID could be determined.
Consider runn ing gcloud config set project or setting the

GOOGLE_CLOUD_PROJECT environment variable [7:44:22 PM] -
INFO:root:Competitor 'Fluffy Paws Pet Care' already exists with

CompetitorlD 'ChlJZ0xDkJE1 K4gR2M96fxyNM0s'. INFO:root:Found

competitor: Paws Playgrounds with place_id:
ChlJOaUqA3XL 1 lkRc314PBuuQiQ [7:44:22 PM] -

WARNING:google.auth._default:No project ID could be determined .
Consider runn ing gcloud config set project or setting the

GOOGLE_CLOUD_PROJECT environment variable [7:44:23 PM] -
INFO:root:Competitor 'Paws Playgrounds' already exists with CompetitorlD
'ChlJOaUqA3XL 1 lkRc314PBuuQiQ'. INFO:root:Found competitor: Park9

Downtown- Dog Playcare. Spa. Resort with place_id:

ChIJeynt9jzl 1 lkRozMJHp8pTzY [7:44:23 PM] -

WARNING:google.auth._default:No project ID could be determined .
Consider runn ing gcloud config set project or setting the

GOOGLE_CLOUD_PROJECT environment variable [7:44:24 PM] -
INFO:root:Competitor 'Park9 Downtown- Dog Playcare. Spa. Resort'
already exists with CompetitorlD 'ChIJeynt9jzl 1 lkRozMJHp8pTzY'.

INFO:root:Found competitor: K9 Clubhouse with place_id: ChlJRyiJ-

5vL 1 lkRtTNMQq6kDoA [7:44:24 PM] - WARNING:google.auth ._default:No

project ID could be determined. Consider runn ing gcloud config set

project or setting the GOOGLE_CLOUD_PROJECT environment

variable [7:44:25 PM] - INFO:root:Competitor 'K9 Clubhouse' already
exists with Competitor! D 'Ch IJ RyiJ-5vL 11 kRtTN MQq6kDoA'.

INFO:root:Performing API search for query: dog boarding

The warning about the project ID is typically caused by the Google Cloud SOK not being
able to determine the project ID from the environment in which your code is running.

Since you have already set the GOOGLE_CLOUD_PROJECT environment variable in the
Cloud Functions configuration, the issue may be related to how the BigQuery client is

being initial ized or how authentication is being handled.

Steps to Resolve the Warning

147/192

ccast
Highlight

149/192

python

from google.cloud import bigquery
import os
import logging

def get_bigquery_client():
 """Returns a BigQuery client using the specified project ID."""
 project_id = os.environ.get("GOOGLE_CLOUD_PROJECT", "agency-seo-tools-
318618")
 logging.info(f"Using project ID: {project_id}")
 return bigquery.Client(project=project_id)

def get_first_customer_with_queries(project_id):
 """Fetches the first customer and their queries from BigQuery."""
 client = get_bigquery_client()
 logging.info("Fetching first customer and queries from BigQuery")

 # Fetch the first customer with their search location
 customer_query = """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`
 LIMIT 1;
 """.format(project_id)

 customer_query_job = client.query(customer_query)
 customer = next(customer_query_job.result(), None) # Get the first
customer

 if not customer:
 raise Exception("No customers found in the database.")

 customer_id = customer.get("CustomerID")
 customer_name = customer.get("CustomerName")
 search_location = customer.get("SearchLocation")

 logging.info(f"Found customer: {customer_name} with ID: {customer_id}")

 # Fetch all queries for the customer using parameterized query
 queries_query = """
 SELECT Query
 FROM `{}.CustomerGbpCompetitors.CustomerQueries`

150/192

 WHERE CustomerID = @customer_id;
 """.format(project_id)

 job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("customer_id", "STRING",
customer_id),
]
)

 queries_job = client.query(queries_query, job_config=job_config)
 queries = [row.get("Query") for row in queries_job.result()]

 logging.info(f"Queries found for customer {customer_name}: {queries}")

 return customer_name, search_location, queries

def add_competitor_if_not_exists(project_id, competitor_name, place_id):
 """Adds a competitor to the database if it does not already exist."""
 client = get_bigquery_client()

 # Check if the competitor already exists using place_id with
parameterized query
 check_query = """
 SELECT CompetitorID
 FROM `{}.CustomerGbpCompetitors.Competitors`
 WHERE CompetitorID = @place_id;
 """.format(project_id)

 check_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("place_id", "STRING", place_id),
]
)

 check_job = client.query(check_query, job_config=check_job_config)
 competitor = next(check_job.result(), None)

 if competitor:
 logging.info(f"Competitor '{competitor_name}' already exists with
CompetitorID '{place_id}'.")
 return

 # Insert the new competitor into the database using parameterized query
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.Competitors` (CompetitorID,
CompetitorName)
 VALUES (@place_id, @competitor_name);
 """.format(project_id)

 insert_job_config = bigquery.QueryJobConfig(
 query_parameters=[

bi gquery .Scal arQueryParamete r ("pl ace_i d" , "STRI NG", pl ace_i d),
bi gquery .Scal arQueryParameter("compet itor_name", "STRI NG",

competitor _name),
]

i nsert_j ob = client .query(i nsert_que ry, j ob_config=i nsert_j ob_conf i g)
i nsert_j ob . resu l t() # Wai t f or the query t o compl ete

loggi ng .info(f" Compet i tor '{competi tor_name} ' added wi t h Compet i tor I D
' {pl ace_id} ' .")

Explanation

• Explicit Project ID: The get_bigquery_client function now retrieves the project

ID from the environment variable using

os . environ . get ("G00GLE_CL0UD_PR0JECT", "agency-sea- tools-318618") . This
ensures that the project ID is used consistently throughout your application.

• Fallback Default: A fallback default project ID is provided in case the environment
variable is not set, but it's best to ensure the environment variable is properly set.

Testing

1. Deploy Updated Code: Ensure the updated big_query. py fi le is deployed.

2. Test the Function: Send a request to the Cloud Function URL and verify the logs.
3. Check Logs: Confirm that the warning about the project ID is resolved and that

the logs correctly display the project ID being used.

This approach should resolve the project ID warning by ensuring the project ID is
correctly set in your environment. If there are further issues, let me know!

@

Let's move on. Let's update the project code files to expand the
functional ity. Currently the scripts get the first customer, loop through all
queries for that customer and consolidates all top competitors for all

queries. Now, let's update the code so that the script performs these
operations for all customers in the database.

To update the project code so that the script processes all customers in the database,
you'll need to modify the code to loop through each customer and perform the necessary
operations for each one. Let's implement these changes in the code.

Step 1: Update big_query. py

1 51/ 192

ccast
Highlight

152/192

First, we'll need to update the get_first_customer_with_queries function to fetch all
customers instead of just the first one.

Updated big_query.py

153/192

python

from google.cloud import bigquery
import os
import logging

def get_bigquery_client():
 """Returns a BigQuery client using the specified project ID."""
 project_id = os.environ.get("GOOGLE_CLOUD_PROJECT", "agency-seo-tools-
318618")
 logging.info(f"Using project ID: {project_id}")
 return bigquery.Client(project=project_id)

def get_all_customers_with_queries(project_id):
 """Fetches all customers and their queries from BigQuery."""
 client = get_bigquery_client()
 logging.info("Fetching all customers and queries from BigQuery")

 # Fetch all customers with their search location
 customer_query = """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`;
 """.format(project_id)

 customer_query_job = client.query(customer_query)
 customers = customer_query_job.result()

 # Prepare a list to hold customers and their queries
 customers_with_queries = []

 for customer in customers:
 customer_id = customer.get("CustomerID")
 customer_name = customer.get("CustomerName")
 search_location = customer.get("SearchLocation")

 logging.info(f"Found customer: {customer_name} with ID:
{customer_id}")

 # Fetch all queries for the customer using parameterized query
 queries_query = """
 SELECT Query
 FROM `{}.CustomerGbpCompetitors.CustomerQueries`

154/192

 WHERE CustomerID = @customer_id;
 """.format(project_id)

 job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("customer_id", "STRING",
customer_id),
]
)

 queries_job = client.query(queries_query, job_config=job_config)
 queries = [row.get("Query") for row in queries_job.result()]

 logging.info(f"Queries found for customer {customer_name}:
{queries}")

 # Add the customer and their queries to the list
 customers_with_queries.append({
 "customer_id": customer_id,
 "customer_name": customer_name,
 "search_location": search_location,
 "queries": queries
 })

 return customers_with_queries

def add_competitor_if_not_exists(project_id, competitor_name, place_id):
 """Adds a competitor to the database if it does not already exist."""
 client = get_bigquery_client()

 # Check if the competitor already exists using place_id with
parameterized query
 check_query = """
 SELECT CompetitorID
 FROM `{}.CustomerGbpCompetitors.Competitors`
 WHERE CompetitorID = @place_id;
 """.format(project_id)

 check_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("place_id", "STRING", place_id),
]
)

 check_job = client.query(check_query, job_config=check_job_config)
 competitor = next(check_job.result(), None)

 if competitor:
 logging.info(f"Competitor '{competitor_name}' already exists with
CompetitorID '{place_id}'.")
 return

155/192

 # Insert the new competitor into the database using parameterized query
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.Competitors` (CompetitorID,
CompetitorName)
 VALUES (@place_id, @competitor_name);
 """.format(project_id)

 insert_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("place_id", "STRING", place_id),
 bigquery.ScalarQueryParameter("competitor_name", "STRING",
competitor_name),
]
)

 insert_job = client.query(insert_query, job_config=insert_job_config)
 insert_job.result() # Wait for the query to complete

 logging.info(f"Competitor '{competitor_name}' added with CompetitorID
'{place_id}'.")

Step 2: Update main.py

Next, update main.py to loop through each customer and process their queries:

156/192

python

import functions_framework
import json
import seo_api # Import the seo_api module
import big_query # Import the big_query module
import logging

Configure logging
logging.basicConfig(level=logging.INFO)

@functions_framework.http
def script_init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"
 logging.info(f"Starting process for project ID: {project_id}")

 # Fetch all customers and their queries
 customers_with_queries =
big_query.get_all_customers_with_queries(project_id)

 # Process each customer
 for customer_data in customers_with_queries:
 customer_name = customer_data["customer_name"]
 search_location = customer_data["search_location"]
 queries = customer_data["queries"]

 logging.info(f"Processing customer: {customer_name} with search
location: {search_location}")
 logging.info(f"Queries to process: {queries}")

 # Create a set to hold unique competitor names
 competitor_names = set()

 # Loop through all queries for the customer
 for query in queries:
 logging.info(f"Performing API search for query: {query}")

157/192

 # Perform an API request for each query
 api_response = seo_api.perform_api_maps_search(query,
search_location)
 items = api_response.get("tasks", [])[0].get("result", [])
[0].get("items", [])

 # Find top 6 competitors (exclude customer name)
 for item in items[:6]:
 business_name = item.get("title")
 place_id = item.get("place_id")

 # Check if place_id is available
 if place_id is not None:
 if business_name != customer_name:
 logging.info(f"Found competitor:
{business_name} with place_id: {place_id}")
 competitor_names.add(business_name)

 # Add competitor to database if it doesn't
already exist
 big_query.add_competitor_if_not_exists(
 project_id,
 business_name,
 place_id # Pass place_id as a string
)
 else:
 logging.warning(f"Place ID not found for
competitor: {business_name}")

 # Log the unique competitors for the current customer
 logging.info(f"Unique competitors found for customer
{customer_name}: {list(competitor_names)}")

 logging.info("Process completed for all customers.")

 # Return a success message
 return "Process completed successfully for all customers.", 200,
{'Content-Type': 'text/plain'}

 except Exception as e:
 logging.error(f"An error occurred: {str(e)}")
 return f"An error occurred: {str(e)}", 500

Explanation

get_all_customers_with_queries: This function now retrieves all customers and
their associated queries from BigQuery.

• Loop Through Customers: The main function loops through each customer,
processes their queries, and collects competitors.

• Logging: Detailed logging is included to track progress and any issues
encountered.

Testing

1. Deploy Updated Code: Deploy the updated main. py and big_query. py files as

part of your Cloud Function package.

2. Test the Function: Send a request to the Cloud Function URL and verify the

output.
3. Check Logs: Review logs to ensure that all customers are processed and any

issues are logged .

These updates will enable the script to process all customers in the database and

consolidate competitors for each one. Let me know if you need further adjustments or

have additional questions!

@

This looks like it worked, but there's a problem with the data because two
customers have the same place_id value in the database. Can you write

the SOL to update the CustomerlD for to

? You can use the business name to
find the record and update it. The business name in the database is

II

To update the customerID for ' 11 in

your customers table, you can use the following SOL query. This query will find the

record by its business name and update the customerro:

sql

UPDATE ' age ncy -seo - tool s -318618 .Cust omerGbpCompetitors .Cust omers'
SET CustomerI D = '

WHERE CustomerName = '

Steps to Execute the SQL

I •
I

158/192

ccast
Highlight

1. Open BigQuery Console: Go to the BigQuery section of the Google Cloud

Console.
2. Select Your Project: Ensure you have the correct project selected.
3. Run the Query:

o Open the SQL workspace.
o Copy and paste the above SQL query into the query editor.
o Execute the query to update the record.

Verification

After running the query, you can verify that the update was successful by executing a
SELECT query:

sql

SELECT *
FROM ·agency-seo-tools-318618.CustomerGbpCompetitors.Customers·
WHERE CustomerName = ' I•

I

This will show you the updated record to confirm that the customerID has been changed

as intended.

Considerations

• Ensure that no other records have duplicate customerID values.

• Double-check that the change aligns with the actual place_id for "Wiebe Criminal
Defence."

These steps will correct the customerID for the specified business in your database. Let
me know if you encounter any issues or need further assistance!

Now we have to update CustomerlD to
in the CustomerQueries table for records who have a QuerylD value of 7

or8

159/192

ccast
Highlight

160/192

To update the CustomerID in the CustomerQueries table for records with specific
QueryID values, you can use the following SQL query. This query will update the
CustomerID for the specified QueryID values:

sql

UPDATE `agency-seo-tools-318618.CustomerGbpCompetitors.CustomerQueries`
SET CustomerID = ' '
WHERE QueryID IN (7, 8);

Steps to Execute the SQL

1. Open BigQuery Console: Go to the BigQuery section of the Google Cloud
Console.

2. Select Your Project: Ensure you have the correct project selected.
3. Run the Query:

Open the SQL workspace.
Copy and paste the above SQL query into the query editor.
Execute the query to update the records.

Verification

After running the query, you can verify that the update was successful by executing a
SELECT query:

sql

SELECT *
FROM `agency-seo-tools-318618.CustomerGbpCompetitors.CustomerQueries`
WHERE QueryID IN (7, 8);

This will show you the updated records to confirm that the customerID has been

changed as intended.

Considerations

• Ensure that the updated customerID matches the place_id for "Wiebe Criminal

Defence" as expected .
• Double-check that no other records are unintentionally affected by this change.

These steps will update the customer ID for the specified queries in your database. If
you need further assistance, feel free to ask!

@

Okay, looks like the problem may have been resolved now. Let's move on.

We forgot to include one step during the process of find ing all unique
competitors across all queries for each customer. During this process, we

have to update the CustomersCompetitors table with the Customer! D and
CompetitorlD for each unique competitor found.

To update the Customerscompetitors table with the CustomerID and CompetitorID for

each unique competitor found during the process, you need to add an additional step in

your code. This step will involve checking if the association between a customer and a
competitor already exists and inserting a new record if it doesn't.

Step 1: Update big_query. py

We'll add a function to handle the insertion of records into the customerscompetitors

table.

Updated big_query. py

161/ 192

ccast
Highlight

162/192

python

from google.cloud import bigquery
import os
import logging

def get_bigquery_client():
 """Returns a BigQuery client using the specified project ID."""
 project_id = os.environ.get("GOOGLE_CLOUD_PROJECT", "agency-seo-tools-
318618")
 logging.info(f"Using project ID: {project_id}")
 return bigquery.Client(project=project_id)

def get_all_customers_with_queries(project_id):
 """Fetches all customers and their queries from BigQuery."""
 client = get_bigquery_client()
 logging.info("Fetching all customers and queries from BigQuery")

 # Fetch all customers with their search location
 customer_query = """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`;
 """.format(project_id)

 customer_query_job = client.query(customer_query)
 customers = customer_query_job.result()

 # Prepare a list to hold customers and their queries
 customers_with_queries = []

 for customer in customers:
 customer_id = customer.get("CustomerID")
 customer_name = customer.get("CustomerName")
 search_location = customer.get("SearchLocation")

 logging.info(f"Found customer: {customer_name} with ID:
{customer_id}")

 # Fetch all queries for the customer using parameterized query
 queries_query = """
 SELECT Query
 FROM `{}.CustomerGbpCompetitors.CustomerQueries`

163/192

 WHERE CustomerID = @customer_id;
 """.format(project_id)

 job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("customer_id", "STRING",
customer_id),
]
)

 queries_job = client.query(queries_query, job_config=job_config)
 queries = [row.get("Query") for row in queries_job.result()]

 logging.info(f"Queries found for customer {customer_name}:
{queries}")

 # Add the customer and their queries to the list
 customers_with_queries.append({
 "customer_id": customer_id,
 "customer_name": customer_name,
 "search_location": search_location,
 "queries": queries
 })

 return customers_with_queries

def add_competitor_if_not_exists(project_id, competitor_name, place_id):
 """Adds a competitor to the database if it does not already exist."""
 client = get_bigquery_client()

 # Check if the competitor already exists using place_id with
parameterized query
 check_query = """
 SELECT CompetitorID
 FROM `{}.CustomerGbpCompetitors.Competitors`
 WHERE CompetitorID = @place_id;
 """.format(project_id)

 check_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("place_id", "STRING", place_id),
]
)

 check_job = client.query(check_query, job_config=check_job_config)
 competitor = next(check_job.result(), None)

 if competitor:
 logging.info(f"Competitor '{competitor_name}' already exists with
CompetitorID '{place_id}'.")
 return

164/192

 # Insert the new competitor into the database using parameterized query
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.Competitors` (CompetitorID,
CompetitorName)
 VALUES (@place_id, @competitor_name);
 """.format(project_id)

 insert_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("place_id", "STRING", place_id),
 bigquery.ScalarQueryParameter("competitor_name", "STRING",
competitor_name),
]
)

 insert_job = client.query(insert_query, job_config=insert_job_config)
 insert_job.result() # Wait for the query to complete

 logging.info(f"Competitor '{competitor_name}' added with CompetitorID
'{place_id}'.")

def add_customer_competitor_association(project_id, customer_id,
competitor_id):
 """Adds an association between a customer and a competitor if it
doesn't exist."""
 client = get_bigquery_client()

 # Check if the association already exists
 check_query = """
 SELECT 1
 FROM `{}.CustomerGbpCompetitors.CustomersCompetitors`
 WHERE CustomerID = @customer_id AND CompetitorID = @competitor_id;
 """.format(project_id)

 check_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("customer_id", "STRING",
customer_id),
 bigquery.ScalarQueryParameter("competitor_id", "STRING",
competitor_id),
]
)

 check_job = client.query(check_query, job_config=check_job_config)
 association_exists = next(check_job.result(), None)

 if association_exists:
 logging.info(f"Association between CustomerID '{customer_id}' and
CompetitorID '{competitor_id}' already exists.")
 return

 # Insert the new association into the database

165/192

 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.CustomersCompetitors`
(CustomerID, CompetitorID)
 VALUES (@customer_id, @competitor_id);
 """.format(project_id)

 insert_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("customer_id", "STRING",
customer_id),
 bigquery.ScalarQueryParameter("competitor_id", "STRING",
competitor_id),
]
)

 insert_job = client.query(insert_query, job_config=insert_job_config)
 insert_job.result() # Wait for the query to complete

 logging.info(f"Association between CustomerID '{customer_id}' and
CompetitorID '{competitor_id}' added.")

Step 2: Update main.py

Modify the code to update the CustomersCompetitors table with each unique competitor
found:

166/192

python

import functions_framework
import json
import seo_api # Import the seo_api module
import big_query # Import the big_query module
import logging

Configure logging
logging.basicConfig(level=logging.INFO)

@functions_framework.http
def script_init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"
 logging.info(f"Starting process for project ID: {project_id}")

 # Fetch all customers and their queries
 customers_with_queries =
big_query.get_all_customers_with_queries(project_id)

 # Process each customer
 for customer_data in customers_with_queries:
 customer_id = customer_data["customer_id"]
 customer_name = customer_data["customer_name"]
 search_location = customer_data["search_location"]
 queries = customer_data["queries"]

 logging.info(f"Processing customer: {customer_name} with search
location: {search_location}")
 logging.info(f"Queries to process: {queries}")

 # Create a set to hold unique competitor names
 competitor_names = set()

 # Loop through all queries for the customer
 for query in queries:
 logging.info(f"Performing API search for query: {query}")

167/192

 # Perform an API request for each query
 api_response = seo_api.perform_api_maps_search(query,
search_location)
 items = api_response.get("tasks", [])[0].get("result", [])
[0].get("items", [])

 # Find top 6 competitors (exclude customer name)
 for item in items[:6]:
 business_name = item.get("title")
 place_id = item.get("place_id")

 # Check if place_id is available
 if place_id is not None:
 if business_name != customer_name:
 logging.info(f"Found competitor:
{business_name} with place_id: {place_id}")
 competitor_names.add(business_name)

 # Add competitor to database if it doesn't
already exist
 big_query.add_competitor_if_not_exists(
 project_id,
 business_name,
 place_id # Pass place_id as a string
)

 # Add association between customer and
competitor
 big_query.add_customer_competitor_association(
 project_id,
 customer_id,
 place_id
)
 else:
 logging.warning(f"Place ID not found for
competitor: {business_name}")

 # Log the unique competitors for the current customer
 logging.info(f"Unique competitors found for customer
{customer_name}: {list(competitor_names)}")

 logging.info("Process completed for all customers.")

 # Return a success message
 return "Process completed successfully for all customers.", 200,
{'Content-Type': 'text/plain'}

 except Exception as e:
 logging.error(f"An error occurred: {str(e)}")
 return f"An error occurred: {str(e)}", 500

168/192

Explanation

add_customer_competitor_association: This function checks if an association
between a customer and a competitor already exists in the CustomersCompetitors
table and inserts a new record if it doesn't.
Main Processing Loop: After adding a competitor, the code now also adds the
association between the customer and the competitor

Great. Now let's move on. Let's add the functionality of populating the data
in the BusinessData table: - RecordID (Integer, Required) - RecordDate
(Date, Required) - BusinessID (String, Required) - BusinessType (String,
Required) - BusinessName (String, Required) - ReviewCount (Integer,
Nullable) - AverageRating (Float, Nullable) RecordID should be an
incrementing number starting from 1. The script should look for the largest
RecordID and then increment that by one to add a new record. The
BusinessID is the place_id for the Customer or Competitor. The
BusinessType should either be "Customer" or "Competitor" The
BusinessName, ReviewCount, and AverageRating should be retrieved
from the API's output. The code should populate the BusinessData table
with the Customer's data as well as all unique competitors. Below is
sample output from the API to use for determining where to retrieve values
from. { "id": "08090332-8148-0139-0000-b62fd6410371", "status_code":
20000, "status_message": "Ok.", "time": "4.0533 sec.", "cost": 0.002,
"result_count": 1, "path": ["v3", "serp", "google", "maps", "live", "advanced"
], "data": { "api": "serp", "function": "live", "se": "google", "se_type": "maps",
"keyword": "commercial cleaning company", "location_code": 1002200,
"language_code": "en", "device": "desktop", "os": "windows", "depth": 10 },
"result": [{ "keyword": "commercial cleaning company", "type": "maps",
"se_domain": "google.ca", "location_code": 1002200, "language_code":
"en", "check_url":
"https://google.ca/maps/search/commercial+cleaning+company/@43.3616211,-80.3
hl=en&gl=CA&uule=w+CAIQIFISCRls5CC4iSuIEXAdI8coewMF",
"datetime": "2024-08-09 00:33:00 +00:00", "spell": null, "item_types": [
"maps_search"], "se_results_count": 0, "items_count": 10, "items": [{
"type": "maps_search", "rank_group": 1, "rank_absolute": 1, "domain":
"kitchenercleaningservice.ca", "title": "KCS Kitchener Cleaning Services",
"url": "https://kitchenercleaningservice.ca/?
utm_source=gmb&utm_medium=referral", "contact_url":
"https://kitchenercleaningservice.ca/?
utm_source=organic&utm_medium=gmb&utm_campaign=appointment_link",
"rating": { "rating_type": "Max5", "value": 5, "votes_count": 54,

ccast
Highlight

169/192

"rating_max": null }, "hotel_rating": null, "price_level": null,
"rating_distribution": { "1": 0, "2": 0, "3": 0, "4": 0, "5": 54 }, "snippet": "135
Hardcastle Dr, Cambridge, ON N1S 0A6", "address": "135 Hardcastle Dr,
Cambridge, ON N1S 0A6", "address_info": { "borough": null, "address":
"135 Hardcastle Dr", "city": "Cambridge", "zip": "N1S 0A6", "region":
"Ontario", "country_code": "CA" }, "place_id":
"ChIJSZm_ZlhUNUkR3gbDymYFA0U", "phone": "+1226-400-7376",
"main_image":
"https://lh5.googleusercontent.com/p/AF1QipMgTrGi8LhvC61OO2nul43v1hZovApIpO
h306-k-no", "total_photos": 89, "category": "House cleaning service",
"additional_categories": ["Commercial cleaning service"], "category_ids": [
"house_cleaning_service", "commercial_cleaning_service"], "work_hours":
{ "timetable": { "sunday": null, "monday": [{ "open": { "hour": 9, "minute": 0
}, "close": { "hour": 22, "minute": 0 } }], "tuesday": [{ "open": { "hour": 9,
"minute": 0 }, "close": { "hour": 22, "minute": 0 } }], "wednesday": [{ "open":
{ "hour": 9, "minute": 0 }, "close": { "hour": 22, "minute": 0 } }], "thursday": [
{ "open": { "hour": 9, "minute": 0 }, "close": { "hour": 22, "minute": 0 } }],
"friday": [{ "open": { "hour": 9, "minute": 0 }, "close": { "hour": 22, "minute":
0 } }], "saturday": [{ "open": { "hour": 9, "minute": 0 }, "close": { "hour": 18,
"minute": 0 } }] }, "current_status": "open" }, "feature_id":
"0x4935545866bf9949:0x45030566cac306de", "cid":
"4972824352593741534", "latitude": 43.3530636, "longitude":
-80.3462157, "is_claimed": true, "local_justifications": null,
"is_directory_item": false }, { "type": "maps_search", "rank_group": 2,
"rank_absolute": 2, "domain": "www.silvermapleservices.com", "title":
"Silver Maple Maintenance", "url": "http://www.silvermapleservices.com/",
"contact_url": null, "rating": { "rating_type": "Max5", "value": 5,
"votes_count": 10, "rating_max": null }, "hotel_rating": null, "price_level":
null, "rating_distribution": { "1": 0, "2": 0, "3": 0, "4": 0, "5": 10 }, "snippet":
"70 Dudhope Ave, Cambridge, ON N1R 4T6", "address": "70 Dudhope
Ave, Cambridge, ON N1R 4T6", "address_info": { "borough": "Christopher-
Champlain", "address": "70 Dudhope Ave", "city": "Cambridge", "zip": "N1R
4T6", "region": "Ontario", "country_code": "CA" }, "place_id":
"ChIJURatUr13LIgRgfU0_2bmjd8", "phone": "+1226-791-7517",
"main_image":
"https://lh5.googleusercontent.com/p/AF1QipNY2ZAKg0ojrGvma_HcgRCQqGjlAHrQ
h272-k-no", "total_photos": 4, "category": "Commercial cleaning service",
"additional_categories": null, "category_ids": [
"commercial_cleaning_service"], "work_hours": { "timetable": { "sunday": [
{ "open": { "hour": 8, "minute": 0 }, "close": { "hour": 19, "minute": 0 } }],
"monday": [{ "open": { "hour": 8, "minute": 0 }, "close": { "hour": 19,
"minute": 0 } }], "tuesday": [{ "open": { "hour": 8, "minute": 0 }, "close": {

ccast
Highlight

170/192

"hour": 19, "minute": 0 } }], "wednesday": [{ "open": { "hour": 8, "minute": 0
}, "close": { "hour": 19, "minute": 0 } }], "thursday": [{ "open": { "hour": 8,
"minute": 0 }, "close": { "hour": 19, "minute": 0 } }], "friday": [{ "open": {
"hour": 8, "minute": 0 }, "close": { "hour": 19, "minute": 0 } }], "saturday": [{
"open": { "hour": 8, "minute": 0 }, "close": { "hour": 19, "minute": 0 } }] },
"current_status": "close" }, "feature_id":
"0x882c77bd52ad1651:0xdf8de666ff34f581", "cid":
"16108784772216845697", "latitude": 43.349884599999996, "longitude":
-80.30021909999999, "is_claimed": true, "local_justifications": null,
"is_directory_item": false }, { "type": "maps_search", "rank_group": 3,
"rank_absolute": 3, "domain": null, "title": "Stratus Building Solutions", "url":
null, "contact_url": null, "rating": { "rating_type": "Max5", "value": 5,
"votes_count": 4, "rating_max": null }, "hotel_rating": null, "price_level":
null, "rating_distribution": { "1": 0, "2": 0, "3": 0, "4": 0, "5": 4 }, "snippet":
"653 Franklin Blvd Unit 2, Cambridge, ON N1R 7Z1", "address": "653
Franklin Blvd Unit 2, Cambridge, ON N1R 7Z1", "address_info": {
"borough": "Fiddlesticks", "address": "653 Franklin Blvd Unit 2", "city":
"Cambridge", "zip": "N1R 7Z1", "region": "Ontario", "country_code": "CA" },
"place_id": "ChIJid4ZIYX1K4gRDWh3D0u009Y", "phone": "+1519-404-
7417", "main_image":
"https://lh5.googleusercontent.com/p/AF1QipPSLryp7WKxgc2JBWI98T3DQLDAxE5
h544-k-no", "total_photos": 4, "category": "Commercial cleaning service",
"additional_categories": ["Cleaners", "Janitorial service"], "category_ids": [
"commercial_cleaning_service", "cleaners", "janitorial_service"],
"work_hours": { "timetable": { "sunday": null, "monday": [{ "open": { "hour":
8, "minute": 30 }, "close": { "hour": 17, "minute": 0 } }], "tuesday": [{ "open":
{ "hour": 8, "minute": 30 }, "close": { "hour": 17, "minute": 0 } }],
"wednesday": [{ "open": { "hour": 8, "minute": 30 }, "close": { "hour": 17,
"minute": 0 } }], "thursday": [{ "open": { "hour": 8, "minute": 30 }, "close": {
"hour": 17, "minute": 0 } }], "friday": [{ "open": { "hour": 8, "minute": 30 },
"close": { "hour": 17, "minute": 0 } }], "saturday": null }, "current_status":
"close" }, "feature_id": "0x882bf5852119de89:0xd6d3b44b0f77680d", "cid":
"15479914578677557261", "latitude": 43.376776799999995, "longitude":
-80.2971543, "is_claimed": true, "local_justifications": null,
"is_directory_item": false }, { "type": "maps_search", "rank_group": 4,
"rank_absolute": 4, "domain": "www.jan-pro.ca", "title": "JAN-PRO
Kitchener-Waterloo", "url": "https://www.jan-pro.ca/en/office/kitchener-
waterloo/?
utm_source=google&utm_medium=organic&utm_campaign=local&utm_content=Kitc
"contact_url": null, "rating": { "rating_type": "Max5", "value": 4.9,
"votes_count": 21, "rating_max": null }, "hotel_rating": null, "price_level":
null, "rating_distribution": { "1": 0, "2": 0, "3": 0, "4": 2, "5": 19 }, "snippet":

ccast
Highlight

171/192

"543 Mill St #1, Kitchener, ON N2G 2Y5", "address": "543 Mill St #1,
Kitchener, ON N2G 2Y5", "address_info": { "borough": "Rockway",
"address": "543 Mill St #1", "city": "Kitchener", "zip": "N2G 2Y5", "region":
"Ontario", "country_code": "CA" }, "place_id": "ChIJ5ZDbstaJK4gRq9-
dlPAj1oE", "phone": "+1519-342-3688", "main_image":
"https://lh5.googleusercontent.com/p/AF1QipNPIOxWflrc7jeq1ryxY_EXATImXlbsjrkp
h242-k-no", "total_photos": 3, "category": "Commercial cleaning service",
"additional_categories": ["Cleaners", "Janitorial service"], "category_ids": [
"commercial_cleaning_service", "cleaners", "janitorial_service"],
"work_hours": { "timetable": { "sunday": null, "monday": [{ "open": { "hour":
9, "minute": 0 }, "close": { "hour": 17, "minute": 0 } }], "tuesday": [{ "open": {
"hour": 9, "minute": 0 }, "close": { "hour": 17, "minute": 0 } }], "wednesday":
[{ "open": { "hour": 9, "minute": 0 }, "close": { "hour": 17, "minute": 0 } }],
"thursday": [{ "open": { "hour": 9, "minute": 0 }, "close": { "hour": 17,
"minute": 0 } }], "friday": [{ "open": { "hour": 9, "minute": 0 }, "close": {
"hour": 17, "minute": 0 } }], "saturday": null }, "current_status": "close" },
"feature_id": "0x882b89d6b2db90e5:0x81d623f0949ddfab", "cid":
"9355704792101281707", "latitude": 43.432705999999996, "longitude":
-80.47580959999999, "is_claimed": true, "local_justifications": null,
"is_directory_item": false }, { "type": "maps_search", "rank_group": 5,
"rank_absolute": 5, "domain": null, "title": "MC - Cleaning Services", "url":
null, "contact_url": null, "rating": { "rating_type": "Max5", "value": 5,
"votes_count": 1, "rating_max": null }, "hotel_rating": null, "price_level":
null, "rating_distribution": { "1": 0, "2": 0, "3": 0, "4": 0, "5": 1 }, "snippet": "18
Concession St Unit 305, Cambridge, ON N1R 2G5", "address": "18
Concession St Unit 305, Cambridge, ON N1R 2G5", "address_info": {
"borough": null, "address": "18 Concession St Unit 305", "city":
"Cambridge", "zip": "N1R 2G5", "region": "Ontario", "country_code": "CA" },
"place_id": "ChIJpz8UIkV3LIgRHbQzmqp0zBQ", "phone": "+1226-476-
3364", "main_image":
"https://lh5.googleusercontent.com/p/AF1QipOGIiS1KMCu5A8UuMIOh9OFzBLl59lR
h271-k-no", "total_photos": 4, "category": "Janitorial service",
"additional_categories": ["Cleaners", "Commercial cleaning service",
"House cleaning service", "Window cleaning service"], "category_ids": [
"janitorial_service", "cleaners", "commercial_cleaning_service",
"house_cleaning_service", "window_cleaning_service"], "work_hours": {
"timetable": { "sunday": [{ "open": { "hour": 7, "minute": 0 }, "close": {
"hour": 19, "minute": 0 } }], "monday": [{ "open": { "hour": 7, "minute": 0 },
"close": { "hour": 19, "minute": 0 } }], "tuesday": [{ "open": { "hour": 7,
"minute": 0 }, "close": { "hour": 19, "minute": 0 } }], "wednesday": [{ "open":
{ "hour": 7, "minute": 0 }, "close": { "hour": 19, "minute": 0 } }], "thursday": [
{ "open": { "hour": 7, "minute": 0 }, "close": { "hour": 19, "minute": 0 } }],

ccast
Highlight

172/192

"friday": [{ "open": { "hour": 7, "minute": 0 }, "close": { "hour": 19, "minute":
0 } }], "saturday": [{ "open": { "hour": 7, "minute": 0 }, "close": { "hour": 19,
"minute": 0 } }] }, "current_status": "close" }, "feature_id":
"0x882c774522143fa7:0x14cc74aa9a33b41d", "cid":
"1498701052087874589", "latitude": 43.3536959, "longitude":
-80.3145359, "is_claimed": true, "local_justifications": null,
"is_directory_item": false }, { "type": "maps_search", "rank_group": 6,
"rank_absolute": 6, "domain": "www.kitchenerclean.com", "title": "Kitchener
Clean", "url": "http://www.kitchenerclean.com/", "contact_url": null, "rating":
{ "rating_type": "Max5", "value": 4.9, "votes_count": 15, "rating_max": null },
"hotel_rating": null, "price_level": null, "rating_distribution": { "1": 0, "2": 0,
"3": 0, "4": 2, "5": 13 }, "snippet": "565 Landgren Ct, Kitchener, ON N2A
0G8", "address": "565 Landgren Ct, Kitchener, ON N2A 0G8",
"address_info": { "borough": "Grand River South", "address": "565
Landgren Ct", "city": "Kitchener", "zip": "N2A 0G8", "region": "Ontario",
"country_code": "CA" }, "place_id": "ChIJ63OD6tkLLIgRwEqM-g64LzE",
"phone": "+1519-513-3965", "main_image":
"https://lh5.googleusercontent.com/p/AF1QipPlHRQjtfDXXdD39LDsssL5TdMU_0PrZ
6pBm=w408-h272-k-no", "total_photos": 4, "category": "Commercial
cleaning service", "additional_categories": null, "category_ids": [
"commercial_cleaning_service"], "work_hours": { "timetable": { "sunday":
null, "monday": [{ "open": { "hour": 9, "minute": 0 }, "close": { "hour": 17,
"minute": 0 } }], "tuesday": [{ "open": { "hour": 9, "minute": 0 }, "close": {
"hour": 17, "minute": 0 } }], "wednesday": [{ "open": { "hour": 9, "minute": 0
}, "close": { "hour": 17, "minute": 0 } }], "thursday": [{ "open": { "hour": 9,
"minute": 0 }, "close": { "hour": 17, "minute": 0 } }], "friday": [{ "open": {
"hour": 9, "minute": 0 }, "close": { "hour": 17, "minute": 0 } }], "saturday":
null }, "current_status": "close" }, "feature_id":
"0x882c0bd9ea8373eb:0x312fb80efa8c4ac0", "cid":
"3544253806236420800", "latitude": 43.4459805, "longitude":
-80.4119746, "is_claimed": true, "local_justifications": null,
"is_directory_item": false }, { "type": "maps_search", "rank_group": 7,
"rank_absolute": 7, "domain": "www.georgesjanitorial.ca", "title": "George's
Janitorial Services", "url": "https://www.georgesjanitorial.ca/", "contact_url":
null, "rating": { "rating_type": "Max5", "value": 5, "votes_count": 13,
"rating_max": null }, "hotel_rating": null, "price_level": null,
"rating_distribution": { "1": 0, "2": 0, "3": 0, "4": 0, "5": 13 }, "snippet": null,
"address": null, "address_info": { "borough": null, "address": null, "city": null,
"zip": null, "region": null, "country_code": null }, "place_id":
"ChIJt4Y_l993LIgRKMVu63kOn5Y", "phone": "+1647-261-2267",
"main_image":
"https://lh5.googleusercontent.com/p/AF1QipPTV3lzPz2uJlpvk1WGitsMWzIBb-

ccast
Highlight

173/192

skyigH5KCx=w430-h240-k-no", "total_photos": 4, "category": "Commercial
cleaning service", "additional_categories": ["Service establishment"],
"category_ids": ["commercial_cleaning_service", "establishment_service"
], "work_hours": { "timetable": { "sunday": [{ "open": { "hour": 13, "minute":
0 }, "close": { "hour": 18, "minute": 0 } }], "monday": [{ "open": { "hour": 8,
"minute": 0 }, "close": { "hour": 22, "minute": 0 } }], "tuesday": [{ "open": {
"hour": 8, "minute": 0 }, "close": { "hour": 22, "minute": 0 } }], "wednesday":
[{ "open": { "hour": 8, "minute": 0 }, "close": { "hour": 22, "minute": 0 } }],
"thursday": [{ "open": { "hour": 8, "minute": 0 }, "close": { "hour": 22,
"minute": 0 } }], "friday": [{ "open": { "hour": 8, "minute": 0 }, "close": {
"hour": 22, "minute": 0 } }], "saturday": [{ "open": { "hour": 9, "minute": 0 },
"close": { "hour": 18, "minute": 0 } }] }, "current_status": "open" },
"feature_id": "0x882c77df973f86b7:0x969f0e79eb6ec528", "cid":
"10853409543789921576", "latitude": 43.4321464, "longitude":
-80.4387029, "is_claimed": true, "local_justifications": null,
"is_directory_item": false }, { "type": "maps_search", "rank_group": 8,
"rank_absolute": 8, "domain": null, "title": "Green Team Commercial Clean",
"url": null, "contact_url": null, "rating": { "rating_type": "Max5", "value": 4.8,
"votes_count": 8, "rating_max": null }, "hotel_rating": null, "price_level":
null, "rating_distribution": { "1": 0, "2": 0, "3": 0, "4": 2, "5": 6 }, "snippet":
"120 Carlyle Dr, Kitchener, ON N2P 1N6", "address": "120 Carlyle Dr,
Kitchener, ON N2P 1N6", "address_info": { "borough": "Pioneer Park",
"address": "120 Carlyle Dr", "city": "Kitchener", "zip": "N2P 1N6", "region":
"Ontario", "country_code": "CA" }, "place_id": "ChIJva9mIS31K4gRgxL5M-
M1dWk", "phone": "+1519-722-5326", "main_image":
"https://lh5.googleusercontent.com/p/AF1QipMvrpISvNaal74Z8BJim2_NCXP2ZeAuy
h272-k-no", "total_photos": 3, "category": "Commercial cleaning service",
"additional_categories": null, "category_ids": [
"commercial_cleaning_service"], "work_hours": { "timetable": { "sunday": [
{ "open": { "hour": 0, "minute": 0 }, "close": { "hour": 0, "minute": 0 } }],
"monday": [{ "open": { "hour": 0, "minute": 0 }, "close": { "hour": 0, "minute":
0 } }], "tuesday": [{ "open": { "hour": 0, "minute": 0 }, "close": { "hour": 0,
"minute": 0 } }], "wednesday": [{ "open": { "hour": 0, "minute": 0 }, "close": {
"hour": 0, "minute": 0 } }], "thursday": [{ "open": { "hour": 0, "minute": 0 },
"close": { "hour": 0, "minute": 0 } }], "friday": [{ "open": { "hour": 0, "minute":
0 }, "close": { "hour": 0, "minute": 0 } }], "saturday": [{ "open": { "hour": 0,
"minute": 0 }, "close": { "hour": 0, "minute": 0 } }] }, "current_status": "open"
}, "feature_id": "0x882bf52d2166afbd:0x697535e333f91283", "cid":
"7599039196203389571", "latitude": 43.395053, "longitude": -80.4539054,
"is_claimed": true, "local_justifications": null, "is_directory_item": false }, {
"type": "maps_search", "rank_group": 9, "rank_absolute": 9, "domain":
"jdicleaning.com", "title": "JDI Cleaning Services

ccast
Highlight

174/192

Kitchener/Waterloo/Guelph/Cambridge/Brantford", "url":
"https://jdicleaning.com/commercial-cleaning-services/kitchener-on/",
"contact_url": "https://jdicleaning.com/contact/", "rating": { "rating_type":
"Max5", "value": 4.5, "votes_count": 67, "rating_max": null }, "hotel_rating":
null, "price_level": null, "rating_distribution": { "1": 6, "2": 1, "3": 1, "4": 6,
"5": 53 }, "snippet": "871 Victoria St N Unit 209A, Kitchener, ON N2B 3S4",
"address": "871 Victoria St N Unit 209A, Kitchener, ON N2B 3S4",
"address_info": { "borough": "Rosemount", "address": "871 Victoria St N
Unit 209A", "city": "Kitchener", "zip": "N2B 3S4", "region": "Ontario",
"country_code": "CA" }, "place_id": "ChIJOxxmyvPzK4gRPUsGWAAlkI4",
"phone": "+1519-884-9600", "main_image":
"https://lh5.googleusercontent.com/p/AF1QipP5IWIXzzK9DV3d9NcVl7bKEWF46-
jQ33pwq9hg=w408-h408-k-no", "total_photos": 4, "category": "Commercial
cleaning service", "additional_categories": ["Carpet cleaning service",
"Janitorial service", "Sanitation service"], "category_ids": [
"commercial_cleaning_service", "carpet_cleaning_service",
"janitorial_service", "sanitation_service"], "work_hours": { "timetable": {
"sunday": null, "monday": [{ "open": { "hour": 9, "minute": 0 }, "close": {
"hour": 17, "minute": 0 } }], "tuesday": [{ "open": { "hour": 9, "minute": 0 },
"close": { "hour": 17, "minute": 0 } }], "wednesday": [{ "open": { "hour": 9,
"minute": 0 }, "close": { "hour": 17, "minute": 0 } }], "thursday": [{ "open": {
"hour": 9, "minute": 0 }, "close": { "hour": 17, "minute": 0 } }], "friday": [{
"open": { "hour": 9, "minute": 0 }, "close": { "hour": 17, "minute": 0 } }],
"saturday": null }, "current_status": "close" }, "feature_id":
"0x882bf3f3ca661c3b:0x8e90250058064b3d", "cid":
"10272751433439136573", "latitude": 43.463114499999996, "longitude":
-80.4656346, "is_claimed": true, "local_justifications": null,
"is_directory_item": false }, { "type": "maps_search", "rank_group": 10,
"rank_absolute": 10, "domain": "jvscleaningservices.ca", "title": "JVS
Cleaning Services", "url": "https://jvscleaningservices.ca/", "contact_url":
null, "rating": { "rating_type": "Max5", "value": 5, "votes_count": 1,
"rating_max": null }, "hotel_rating": null, "price_level": null,
"rating_distribution": { "1": 0, "2": 0, "3": 0, "4": 0, "5": 1 }, "snippet": "349
Blair Rd, Cambridge, ON N1S 2K3", "address": "349 Blair Rd, Cambridge,
ON N1S 2K3", "address_info": { "borough": "Blair Road", "address": "349
Blair Rd", "city": "Cambridge", "zip": "N1S 2K3", "region": "Ontario",
"country_code": "CA" }, "place_id": "ChIJ9bAddv53LIgR6e8Wm56b3FU",
"phone": "+1226-336-6857", "main_image":
"https://lh5.googleusercontent.com/p/AF1QipOas-
rNg7iRjh9UI8dBH58k2GwHqQ37q1BalVwc=w408-h544-k-no",
"total_photos": 4, "category": "Commercial cleaning service",
"additional_categories": null, "category_ids": [

ccast
Highlight

@

"commercial_cleaning_service"], "work_hours": { "timetable": { "sunday":
null, "monday": [{ "open": { "hour": 9, "minute": 0 }, "close": { "hour": 17,
"minute": 0}}], "tuesday": [{ "open": { "hour": 9, "minute": 0 }, "close": {
"hour": 17, "minute": 0 } }], "wednesday": [{ "open": { "hour": 9, "minute": 0

}, "close": { "hour": 17, "minute": 0}}], "thursday": [{ "open": { "hour": 9,
"minute": 0 }, "close": { "hour": 17, "minute": 0 } }], "friday": [{ "open": {
"hour": 9, "minute": 0 }, "close": { "hour": 17, "minute": 0 } }], "saturday":
null }, "current_status": "close" }, "feature_id":
"0x882c77fe 761 db0f5:0x55dc9b9e9b 16efe9", "cid":
"6186991093609328617", "latitude": 43.37 4094299999996, "longitude":
-80.338674, "is_claimed": true, "localjustifications": null,
"is_directory_item": false}]}]}

To populate the Businessoata table with information about both customers and
competitors, we need to perform the following steps:

1. Retrieve the largest existing RecordID from the Businessoata table to determine
the next RecordID.

2. For each customer and their unique competitors found in the API response, gather
the necessary data (BusinessID, BusinessType, BusinessName, Reviewcount , and
AverageRating).

3. Insert th is data into the Businessoata table, incrementing the Recorctro for each
new record.

Step 1: Update big_query. py

Add functions to handle retrieving the maximum Recorctro and inserting data into the

BusinessData table.

Updated big_query. py

175/192

ccast
Highlight

176/192

python

from google.cloud import bigquery
import os
import logging
from datetime import date

def get_bigquery_client():
 """Returns a BigQuery client using the specified project ID."""
 project_id = os.environ.get("GOOGLE_CLOUD_PROJECT", "agency-seo-tools-
318618")
 logging.info(f"Using project ID: {project_id}")
 return bigquery.Client(project=project_id)

def get_all_customers_with_queries(project_id):
 """Fetches all customers and their queries from BigQuery."""
 client = get_bigquery_client()
 logging.info("Fetching all customers and queries from BigQuery")

 # Fetch all customers with their search location
 customer_query = """
 SELECT
 CustomerID,
 CustomerName,
 SearchLocation
 FROM
 `{}.CustomerGbpCompetitors.Customers`;
 """.format(project_id)

 customer_query_job = client.query(customer_query)
 customers = customer_query_job.result()

 # Prepare a list to hold customers and their queries
 customers_with_queries = []

 for customer in customers:
 customer_id = customer.get("CustomerID")
 customer_name = customer.get("CustomerName")
 search_location = customer.get("SearchLocation")

 logging.info(f"Found customer: {customer_name} with ID:
{customer_id}")

 # Fetch all queries for the customer using parameterized query
 queries_query = """
 SELECT Query

177/192

 FROM `{}.CustomerGbpCompetitors.CustomerQueries`
 WHERE CustomerID = @customer_id;
 """.format(project_id)

 job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("customer_id", "STRING",
customer_id),
]
)

 queries_job = client.query(queries_query, job_config=job_config)
 queries = [row.get("Query") for row in queries_job.result()]

 logging.info(f"Queries found for customer {customer_name}:
{queries}")

 # Add the customer and their queries to the list
 customers_with_queries.append({
 "customer_id": customer_id,
 "customer_name": customer_name,
 "search_location": search_location,
 "queries": queries
 })

 return customers_with_queries

def add_competitor_if_not_exists(project_id, competitor_name, place_id):
 """Adds a competitor to the database if it does not already exist."""
 client = get_bigquery_client()

 # Check if the competitor already exists using place_id with
parameterized query
 check_query = """
 SELECT CompetitorID
 FROM `{}.CustomerGbpCompetitors.Competitors`
 WHERE CompetitorID = @place_id;
 """.format(project_id)

 check_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("place_id", "STRING", place_id),
]
)

 check_job = client.query(check_query, job_config=check_job_config)
 competitor = next(check_job.result(), None)

 if competitor:
 logging.info(f"Competitor '{competitor_name}' already exists with
CompetitorID '{place_id}'.")
 return

178/192

 # Insert the new competitor into the database using parameterized query
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.Competitors` (CompetitorID,
CompetitorName)
 VALUES (@place_id, @competitor_name);
 """.format(project_id)

 insert_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("place_id", "STRING", place_id),
 bigquery.ScalarQueryParameter("competitor_name", "STRING",
competitor_name),
]
)

 insert_job = client.query(insert_query, job_config=insert_job_config)
 insert_job.result() # Wait for the query to complete

 logging.info(f"Competitor '{competitor_name}' added with CompetitorID
'{place_id}'.")

def add_customer_competitor_association(project_id, customer_id,
competitor_id):
 """Adds an association between a customer and a competitor if it
doesn't exist."""
 client = get_bigquery_client()

 # Check if the association already exists
 check_query = """
 SELECT 1
 FROM `{}.CustomerGbpCompetitors.CustomersCompetitors`
 WHERE CustomerID = @customer_id AND CompetitorID = @competitor_id;
 """.format(project_id)

 check_job_config = bigquery.QueryJobConfig(
 query_parameters=[
 bigquery.ScalarQueryParameter("customer_id", "STRING",
customer_id),
 bigquery.ScalarQueryParameter("competitor_id", "STRING",
competitor_id),
]
)

 check_job = client.query(check_query, job_config=check_job_config)
 association_exists = next(check_job.result(), None)

 if association_exists:
 logging.info(f"Association between CustomerID '{customer_id}' and
CompetitorID '{competitor_id}' already exists.")
 return

179/192

 # Insert the new association into the database
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.CustomersCompetitors`
(CustomerID, CompetitorID)
 VALUES (@customer_id, @competitor_id);
 """.format(project_id)

 insert job config bigquery.QueryJobConfig(
 query parameters [
 bigquery.ScalarQueryParameter("customer id", "STRING",
customer id),
 bigquery.ScalarQueryParameter("competitor id", "STRING",
competitor id),
]
)

 insert job client.query(insert query, job config insert job config)
 insert_job.result() # Wait for the query to complete

 logging.info(f"Association between CustomerID '{customer_id}' and
CompetitorID '{competitor_id}' added.")

def get_next_record_id(project_id):
 """Fetches the next RecordID for the BusinessData table."""
 client = get_bigquery_client()

 query = """
 SELECT MAX(RecordID) as max record id
 FROM `{}.CustomerGbpCompetitors.BusinessData`;
 """.format(project id)

 query job client.query(query)
 result next(query job.result(), None)

 if result and result.max record id is not None:
 return result.max record id + 1
 return 1

def insert_business_data(project_id, record_id, business_id, business_type,
business_name, review_count, average_rating):
 """Inserts a new record into the BusinessData table."""
 client = get_bigquery_client()

 # Insert the new record using parameterized query
 insert_query = """
 INSERT INTO `{}.CustomerGbpCompetitors.BusinessData`
 (RecordID, RecordDate, BusinessID, BusinessType, BusinessName,
ReviewCount, AverageRating)
 VALUES (@record_id, @record_date, @business_id, @business_type,
@business name, @review count, @average rating);
 """.format(project id)

181/192

python

import functions_framework
import json
import seo api # Import the seo api module
import big query # Import the big query module
import logging

Configure logging
logging.basicConfig(level logging.INFO)

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"
 logging.info(f"Starting process for project ID: {project_id}")

 # Fetch all customers and their queries
 customers with queries
big query.get all customers with queries(project id)

 # Process each customer
 for customer data in customers with queries:
 customer id customer data["customer id"]
 customer name customer data["customer name"]
 search location customer data["search location"]
 queries customer data["queries"]

 logging.info(f"Processing customer: {customer_name} with search
location: {search_location}")
 logging.info(f"Queries to process: {queries}")

 # Create a set to hold unique competitor names
 competitor_names = set()

 # Loop through all queries for the customer
 for query in queries:
 logging.info(f"Performing API search for query: {query}")

182/192

 # Perform an API request for each query
 api_response = seo_api.perform_api_maps_search(query,
search_location)
 items = api_response.get("tasks", [])[0].get("result", [])
[0].get("items", [])

 # Get the next record ID
 next record id big query.get next record id(project id)

 # Find top 6 competitors (exclude customer name)
 for item in items[:6]:
 business name item.get("title")
 place id item.get("place id")
 rating info item.get("rating", {})
 review count rating info.get("votes count", 0)
 average rating rating info.get("value", 0.0)

 # Determine if this is a customer or competitor
 if business_name == customer_name:
 business_type = "Customer"
 else:
 business_type = "Competitor"

 # Add data to the BusinessData table
 big_query.insert_business_data(
 project_id,
 next record id,
 place id,
 business type,
 business name,
 review count,
 average rating
)

 # Only consider competitors for unique tracking
 if business type "Competitor" and place id is not
None:
 if business_name != customer_name:
 logging.info(f"Found competitor:
{business_name} with place_id: {place_id}")
 competitor_names.add(business_name)

 # Add competitor to database if it doesn't
already exist
 big_query.add_competitor_if_not_exists(
 project_id,
 business_name,
 place_id # Pass place_id as a string
)

 # Add association between customer and

183/192

competitor
 big_query.add_customer_competitor_association(
 project_id,
 customer_id,
 place_id
)

 next record id + 1

 else:
 logging.warning(f"Place ID not found for
competitor: {business name}")

 # Log the unique competitors for the current customer
 logging.info(f"Unique competitors found for customer
{customer name}: {list(competitor names)}")

 logging.info("Process completed for all customers.")

 # Return a success message
 return "Process completed successfully for all customers.", 200,
{'Content-Type': 'text/plain'}

 except Exception as e:
 logging.error(f"An error occurred: {str(e)}")
 return f"An error occurred: {str(e)}", 500

Explanation

get_next_record_id: This function retrieves the highest RecordID in the
BusinessData table and calculates the next available RecordID.
insert business data: Inserts a new record into the BusinessData table with the
details from the API response.
Main Processing Loop: The loop now gathers data for both the customer and
competitors, updating the BusinessData table accordingly. The loop also ensures
RecordID is incremented for each new entry.

This setup will ensure that the BusinessData table is populated with a historical record
of both customers' and competitors' data, enabling you to track changes over time.

I updated the project with the code you provided, but we ran into an error:
"ERROR:root:An error occurred: 'NoneType' object has no attribute 'get'"
Below is the verbose output from the last execution: [8:49:37 PM] -
INFO:root:Starting process for project ID: agency-seo-tools-318618
INFO:root:Using project ID: agency-seo-tools-318618 [8:49:37 PM] -

ccast
Highlight

184/192

WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:49:37 PM] -
INFO:root:Fetching all customers and queries from BigQuery [8:49:38 PM]
- INFO:root:Found customer: KCS Kitchener Cleaning Services with ID:
ChIJSZm_ZlhUNUkR3gbDymYFA0U [8:49:39 PM] - INFO:root:Queries
found for customer KCS Kitchener Cleaning Services: ['commercial
cleaning cambridge', 'commercial cleaning company', 'house cleaning
cambridge', 'commercial cleaning', 'house cleaners cambridge']
INFO:root:Found customer:

 [8:49:40 PM] -
INFO:root:Queries found for customer

: [

'] INFO:root:Found customer:
 with ID:

[8:49:41 PM] - INFO:root:Queries found for customer
: ['

] INFO:root:Found customer:
 with ID: [8:49:41

PM] - INFO:root:Queries found for customer
: ['
'] INFO:root:Processing customer: KCS Kitchener

Cleaning Services with search location: Kitchener,Ontario,Canada
INFO:root:Queries to process: ['commercial cleaning cambridge',
'commercial cleaning company', 'house cleaning cambridge', 'commercial
cleaning', 'house cleaners cambridge'] INFO:root:Performing API search
for query: commercial cleaning cambridge [8:49:45 PM] - INFO:root:Using
project ID: agency-seo-tools-318618 [8:49:45 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:49:46 PM] -
INFO:root:Using project ID: agency-seo-tools-318618 [8:49:46 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:49:48 PM] -
INFO:root:Inserted business data for Competitor 'Tripple J Cleaning' with
RecordID 1. INFO:root:Found competitor: Tripple J Cleaning with place_id:
ChIJ2Ro85i2JK4gR-hJeT8SG9Ig INFO:root:Using project ID: agency-seo-
tools-318618 [8:49:48 PM] - WARNING:google.auth._default:No project ID
could be determined. Consider running gcloud config set project or
setting the GOOGLE_CLOUD_PROJECT environment variable [8:49:49

ccast
Highlight

185/192

PM] - INFO:root:Competitor 'Tripple J Cleaning' already exists with
CompetitorID 'ChIJ2Ro85i2JK4gR-hJeT8SG9Ig'. INFO:root:Using project
ID: agency-seo-tools-318618 [8:49:49 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:49:50 PM] -
INFO:root:Association between CustomerID
'ChIJSZm_ZlhUNUkR3gbDymYFA0U' and CompetitorID
'ChIJ2Ro85i2JK4gR-hJeT8SG9Ig' already exists. INFO:root:Using project
ID: agency-seo-tools-318618 [8:49:50 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:49:52 PM] -
INFO:root:Inserted business data for Competitor 'JAN-PRO Kitchener-
Waterloo' with RecordID 2. INFO:root:Found competitor: JAN-PRO
Kitchener-Waterloo with place_id: ChIJ5ZDbstaJK4gRq9-dlPAj1oE
INFO:root:Using project ID: agency-seo-tools-318618 [8:49:52 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:49:53 PM] -
INFO:root:Competitor 'JAN-PRO Kitchener-Waterloo' already exists with
CompetitorID 'ChIJ5ZDbstaJK4gRq9-dlPAj1oE'. INFO:root:Using project
ID: agency-seo-tools-318618 [8:49:53 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:49:54 PM] -
INFO:root:Association between CustomerID
'ChIJSZm_ZlhUNUkR3gbDymYFA0U' and CompetitorID
'ChIJ5ZDbstaJK4gRq9-dlPAj1oE' already exists. INFO:root:Using project
ID: agency-seo-tools-318618 [8:49:54 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:49:56 PM] -
INFO:root:Inserted business data for Competitor 'JDI Cleaning Services
Kitchener/Waterloo/Guelph/Cambridge/Brantford' with RecordID 3.
INFO:root:Found competitor: JDI Cleaning Services
Kitchener/Waterloo/Guelph/Cambridge/Brantford with place_id:
ChIJOxxmyvPzK4gRPUsGWAAlkI4 INFO:root:Using project ID: agency-
seo-tools-318618 [8:49:56 PM] - WARNING:google.auth._default:No
project ID could be determined. Consider running gcloud config set
project or setting the GOOGLE_CLOUD_PROJECT environment
variable [8:49:57 PM] - INFO:root:Competitor 'JDI Cleaning Services

ccast
Highlight

186/192

Kitchener/Waterloo/Guelph/Cambridge/Brantford' already exists with
CompetitorID 'ChIJOxxmyvPzK4gRPUsGWAAlkI4'. INFO:root:Using
project ID: agency-seo-tools-318618 [8:49:57 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:49:58 PM] -
INFO:root:Association between CustomerID
'ChIJSZm_ZlhUNUkR3gbDymYFA0U' and CompetitorID
'ChIJOxxmyvPzK4gRPUsGWAAlkI4' already exists. INFO:root:Using
project ID: agency-seo-tools-318618 [8:49:58 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:50:00 PM] -
INFO:root:Inserted business data for Competitor 'Lemac Maintenance' with
RecordID 4. INFO:root:Found competitor: Lemac Maintenance with
place_id: ChIJ99oh-nSiFIQRaGSheD7E0B0 INFO:root:Using project ID:
agency-seo-tools-318618 [8:50:00 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:50:01 PM] -
INFO:root:Competitor 'Lemac Maintenance' already exists with
CompetitorID 'ChIJ99oh-nSiFIQRaGSheD7E0B0'. INFO:root:Using project
ID: agency-seo-tools-318618 [8:50:01 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:50:02 PM] -
INFO:root:Association between CustomerID
'ChIJSZm_ZlhUNUkR3gbDymYFA0U' and CompetitorID 'ChIJ99oh-
nSiFIQRaGSheD7E0B0' already exists. INFO:root:Using project ID:
agency-seo-tools-318618 [8:50:02 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:50:04 PM] -
INFO:root:Inserted business data for Competitor 'M&H CLEANING
SERVICES LTD.' with RecordID 5. INFO:root:Found competitor: M&H
CLEANING SERVICES LTD. with place_id: ChIJK8e8QVx9PGoRw_yWy9-
4_DQ INFO:root:Using project ID: agency-seo-tools-318618 [8:50:04 PM] -
WARNING:google.auth._default:No project ID could be determined.
Consider running gcloud config set project or setting the
GOOGLE_CLOUD_PROJECT environment variable [8:50:05 PM] -
INFO:root:Competitor 'M&H CLEANING SERVICES LTD.' already exists
with CompetitorID 'ChIJK8e8QVx9PGoRw_yWy9-4_DQ'. INFO:root:Using

ccast
Highlight

project ID: agency-seo-tools-318618 [8:50:05 PM] -
WARNING:google.auth._default:No project ID could be determined .
Consider running gcloud config set project or setting the

GOOGLE_CLOUD_PROJECT environment variable [8:50:06 PM] -

INFO:root:Association between CustomerlD

'ChlJSZm_ZlhUNUkR3gbDymYFA0U' and CompetitorlD

'ChlJK8e8QVx9PGoRw_yWy9-4_DQ' already exists. ERROR:root:An error
occurred: 'NoneType' object has no attribute 'get'

The error message 'NoneType' object has no attribute 'get' suggests that

somewhere in your code, you are trying to call the . get () method on a None object. This

likely happens when the API response is not structured as expected, and the code tries
to access a key that doesn't exist.

Troubleshooting Steps

1. Check API Response Structure: Ensure that the API response is structured as

expected and contains the necessary data fields.

2. Add Defensive Code: Implement checks to handle situations where expected

keys are missing in the response. This can be done by checking if a key exists
before accessing it.

3. Improve Logging: Add logging statements to capture the API response and

identify where the structure might differ from what the code expects.

Updated Code with Defensive Checks

Let's modify the relevant section in the main. py fi le to add defensive checks and
logging:

Updated main . py

187/192

ccast
Highlight

188/192

python

import functions_framework
import json
import seo api # Import the seo api module
import big query # Import the big query module
import logging

Configure logging
logging.basicConfig(level logging.INFO)

@functions framework.http
def script init(request):
 """HTTP Cloud Function.
 Args:
 request (flask.Request): The request object.
 Returns:
 The response text, or any set of values that can be turned into a
Response object using `make_response`.
 """
 try:
 # Project ID for BigQuery
 project_id = "agency-seo-tools-318618"
 logging.info(f"Starting process for project ID: {project_id}")

 # Fetch all customers and their queries
 customers with queries
big query.get all customers with queries(project id)

 # Process each customer
 for customer data in customers with queries:
 customer id customer data["customer id"]
 customer name customer data["customer name"]
 search location customer data["search location"]
 queries customer data["queries"]

 logging.info(f"Processing customer: {customer_name} with search
location: {search_location}")
 logging.info(f"Queries to process: {queries}")

 # Create a set to hold unique competitor names
 competitor_names = set()

 # Loop through all queries for the customer
 for query in queries:
 logging.info(f"Performing API search for query: {query}")

189/192

 # Perform an API request for each query
 api_response = seo_api.perform_api_maps_search(query,
search_location)
 tasks = api_response.get("tasks", [])

 # Ensure the task and result exist
 if not tasks or not tasks[0].get("result"):
 logging.warning(f"No results found for query: {query}")
 continue

 items tasks[0]["result"][0].get("items", [])

 # Get the next record ID
 next record id big query.get next record id(project id)

 # Find top 6 competitors (exclude customer name)
 for item in items[:6]:
 business_name = item.get("title", "Unknown")
 place_id = item.get("place_id")

 # Check if rating info is present
 rating_info = item.get("rating", {})
 review_count = rating_info.get("votes_count", 0)
 average_rating = rating_info.get("value", 0.0)

 # Determine if this is a customer or competitor
 if business name customer name:
 business type "Customer"
 else:
 business type "Competitor"

 if place id is None:
 logging.warning(f"Place ID not found for business:
{business name}")
 continue

 # Add data to the BusinessData table
 big_query.insert_business_data(
 project_id,
 next_record_id,
 place_id,
 business_type,
 business_name,
 review_count,
 average_rating
)

 # Only consider competitors for unique tracking
 if business type "Competitor":
 if business name ! customer name:
 logging.info(f"Found competitor:

190/192

{business_name} with place_id: {place_id}")
 competitor_names.add(business_name)

 # Add competitor to database if it doesn't
already exist
 big_query.add_competitor_if_not_exists(
 project id,
 business name,
 place id # Pass place id as a string
)

 # Add association between customer and
competitor
 big query.add customer competitor association(
 project id,
 customer id,
 place id
)

 next_record_id += 1

 # Log the unique competitors for the current customer
 logging.info(f"Unique competitors found for customer
{customer_name}: {list(competitor_names)}")

 logging.info("Process completed for all customers.")

 # Return a success message
 return "Process completed successfully for all customers.", 200,
{'Content Type': 'text/plain'}

 except Exception as e:
 logging.error(f"An error occurred: {str(e)}")
 return f"An error occurred: {str(e)}", 500

Key Changes

1. Defensive Checks: Added checks to ensure that the tasks list and result field
are not empty before attempting to access them. If they are missing, a warning is
logged and the loop continues.

2. Logging Improvements: Added logging to capture situations where no results are
found or a place id is missing.

3. Default Values: Used default values when calling .get() on dictionary items to
prevent NoneType errors.

By implementing these changes, the code should be more robust and handle
unexpected API responses more gracefully. Let me know if you encounter any other
issues or need further adjustments!

@

Can you write a BigQuery SOL query that will do the following: Get all

BusinessData records for KCS Kitchener Cleaning Services (CustomerlD:

ChlJSZm_ZlhUNUkR3gbDymYFAOU) and all Competitors that are in the
CustomerCompetitors table that have the CustomerlD set to KCS's ID?

To retrieve all BusinessData records for "KCS Kitchener Cleaning Services" and its

competitors from BigQuery, you can use a JOIN operation between the BusinessData

table and the customerscompetitors table to match records based on the customerID.

The query will look like th is:

sql

SELECT bd . *
FROM 'your_project_id.CustomerGbpCompetitors.BusinessData' bd
JOI N 'your_project_id.CustomerGbpCompetitors.CustomersCompetitors' cc

ON bd .BusinessID = cc.Compet i torID
WHERE cc.CustomerID = 'ChIJSZm_ZlhUNUkR3gbDymYFA0U '

OR bd.BusinessID = 'ChIJSZm_ZlhUNUkR3gbDymYFA0U '

Explanation

• SELECT bd. *: This selects all columns from the BusinessData table.

• JOIN operation: This joins the BusinessData table (bd) with the
Customerscompetitors table (cc) on the condition that the BusinessID in

BusinessData matches the CompetitorID in CustomersCompetitors.

• WHERE clause:

o Retrieves records where the customerID in the customerscompetitors table

matches the ID of "KCS Kitchener Cleaning Services."
o Additionally, it includes records from BusinessData where the BusinessID

matches "KCS Kitchener Cleaning Services" to get its data as well.

191/ 192

ccast
Highlight

192/192

Replace your_project_id with your actual Google Cloud project ID.

This query should return all the records for KCS Kitchener Cleaning Services and its
competitors as defined in your CustomersCompetitors table. Let me know if you need
further assistance or any modifications to this query!

ChatGPT can make mistakes. Check important info.

